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Introduction

In the “intended” models of (first-order) ZFC — Zermelo-Fraenkel set the-
ory with the axiom of Choice — there are only sets. ZFCU is ZFC modi-
fied to allow for the existence of urelements, or atoms, i.e., things that can
be members of sets but are not themselves sets and do not themselves have
members. Consider, then, the following consequence of David Lewis’s (1986)
unqualified principle of Recombination:

R For any cardinal number κ, it is possible that there are at least κ
atoms.1

Daniel Nolan (1996) has shown that, in the context of Lewis’s modal real-
ism, R entails:

A∞ For any cardinal number κ, there are at least κ atoms.2

∗My sincere thanks to Albert Anglberger, Roy Cook, Thomas Forster, Jeffrey Ketland,
Hannes Leitgeb, and Godehard Link for their insightful questions comments on earlier
versions of, and talks based on, this paper. I am especially grateful to Prof. Dr. Leitgeb for
graciously hosting me for the 2011-12 academic year at the Munich Center for Mathemat-
ical Philosophy. I cannot imagine a more congenial and exciting environment in which to
think and work. My thanks also to the Humboldt Stiftung for its support of the MCMP.

1Lewis’s actual principle (1986, 88-89) is that, for any κ and any worldW , it is possible
that there exist κ “duplicates” of the objects that exist inW . This obviously entails R.

2More recently, Ted Sider (2009) has shown that basically the same argument can be
reconstructed in the context of Timothy Williamson’s (2002) theory of necessary existence.
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Although there are many deep and interesting issues in the metaphysics of
modality to explore here, my central concern in this paper is with an ap-
parent disconnect that emerges in the conceptual foundations of set theory.
Specifically, let SoA be the proposition

SoA There is a set of all atoms

and let SoA∞ be the conjunction SoA∧A∞ asserting that the set of atoms
exists and is larger than any cardinal number. It is very easy to show that
ZFCU entails ~SoA∞, i.e., that no such set exists (see §1.3). However, as
Lewis himself has argued (1986, 104ff), our best and most intuitive con-
ception of sets — the so-called iterative conception — seems to be entirely
consistent with SoA∞. But this is a bit puzzling, as the iterative conception
is typically considered to provide the motivation for the intended models of
ZFCU, viz., various limit stages of the so-called cumulative hierarchy.3 So
whence the disconnect?

In this paper I diagnose the source of the disconnect and investigate pos-
sibilities for modifying ZFCU so as to render it consistent with SoA∞ with-
out undermining its intuitive moorings in the iterative conception. Those
familiar with some of the issues here will not be surprised to find that I
focus on the schema F of Replacement. As is well known, F expresses a cer-
tain “limitation of size” assumption about sets. This assumption is critical
to the derivation of ~SoA∞ in ZCFU and I will argue that it is the source of
the disconnect in question. In response, I first propose restricting F so that
it applies only to “small” sets, which divests it of its power to limit set size.
This restriction blocks the derivation of ~SoA∞ but, due to the presence of
the Powerset axiom PS, leaves us with a new disconnect between size and
number. I argue, however, that Cantor’s notion of the absolute infinite pro-
vides us with grounds for a principled restriction on PS that avoids this dis-
connect and still preserves a robust, though qualified, iterative conception
of set. Finally, the loss of certain desirable theorems due to the restriction
on PS leads me to strengthen the modified Replacement schema so that it
can applied to large sets — paradox is avoided by incorporating what might
be called a limitation of height assumption rather than a limitation of size.

3As first described in detail by Zermelo (1930) himself. This paper is translated, with
an excellent introduction by Kanamori, in Zermelo 2010, 392-431.
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In an appendix, it is shown that the suggested modifications are provably
consistent with SoA∞ (relative to an extension of ZFC).

1 ZFCU

We begin by making the axioms of ZFCU explicit and laying out some im-
portant definitions and theorems. Our language includes the membership
predicate ∈ along with a unary predicate Set. A separate predicate for atoms
is of course unnecessary, as an atom in the context of ZFCU is by definition
anything that is not a set. The thesis SoA can thus be formalized in the
obvious way:

SoA ∃x∀y(y ∈ x↔ ~Set(y)).

In addition to the usual apparatus of first-order logic with identity we will
also avail ourselves of the quantifier ∃!νφ (defined as usual) signifying that
exactly one thing satisfies φ. In “impure” set theories like ZFCU, propo-
sitions about sets alone are often more conveniently expressed in terms of
dedicated variables A, B, C, ... that range only over sets; we will follow this
practice here.4 Finally, for variables ν and terms τ , we will often abbrevi-
ate sentences of the form ∀ν(ν ∈ τ → φ) and ∃ν(ν ∈ τ ∧φ) as ∀ν ∈ τ φ and
∃ν ∈τ φ, respectively.

1.1 The Axioms

Our first two axioms characterize the most fundamental properties of our
two primitive predicates:

Set y ∈ x→ Set(x)

Ext ∀x(x ∈ A↔ x ∈ B)→ A = B.

The axioms of Pairing and Union and the schema of Separation are perhaps
the most fundamental principles for “generating” new sets from given sets
and atoms:

4A bit more exactly, we will often write ∃AφxA and ∀AφxA for ∃x(Set(x) ∧ φ) and
∀x(Set(x)→ φ), respectively (where a variable other than ‘A’ is chosen as needed to avoid
untoward collisions). These can be thought of as either notational abbreviations or as the-
orems in a conservative extension of ZFCU as desired.
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Pg ∃A∀z(z ∈ A↔ (z = x∨ z = y))

Un ∃B∀x(x ∈ B↔∃C ∈ Ax ∈ C)

Sep ∃B∀x(x ∈ B↔ (x ∈ A∧φ)), where ‘B’ does not occur free in φ.

Given Ext, Pg, Un, and Sep, we can justify the usual definitions of ∅, the
general union and intersection operators

∪
and

∩
, and their binary coun-

terparts ∪ and ∩. We will also avail ourselves of set abstracts {x : φ} when
we can prove that the objects satisfying φ form a set, and we let {a1, ..., an}
abbreviate {x : x = a1 ∨ ...∨ x = an} (which exists by Pg and Un). We define
the subset relation as usual, except that we explicitly restrict it to sets:

x ⊆ y =df Set(x)∧ Set(y)∧∀z(z ∈ x→ z ∈ y).

These definitions and conventions are useful for simplifying the remaining
axioms.

Fnd A , ∅→∃x ∈ Ax∩A = ∅

Inf ∃A(∅ ∈ A∧∀x(x ∈ A→ x∪ {x} ∈ A))

PS ∃B∀x(x ∈ B↔ x ⊆ A).

By PS and Ext, every set A has a unique power set, so let ℘(A) =df {x : x ⊆ A}.
The above axioms constitute what is often called Z set theory with urele-

ments, ZU, as, with the exception of Fnd, versions of them are all included
in Zermelo 1908, the first reasonably rigorous crack at what was to become
ZFC. Zermelo came to embrace Fnd as well as it became clearer to him that
the iterative conception underlay the intended models of his axioms and it
is included explicitly in the axiomatization he adopted in his 1930 analysis
of the those models.5

Also included in Zermelo’s 1908 axiomatizationwas the axiom of Choice.
As the issues at hand are rendered all the more difficult if there are non-
well-orderable sets, we will avail ourselves freely of the axiom. (I am also
among those who, perhaps quaintly, consider the axiom to be true.) To sim-
plify its expression, let us say that x is choice-friendly, CF(x), if x is a set of
nonempty pairwise disjoints sets:

5See Moore 1978, 1980 and Kanimori’s introduction to Zermelo 1908 in Zermelo 2010,
390-399.
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CF(x) ≡df Set(x)∧∀y ∈ x(y , ∅∧∀z ∈ x (z , y→ y ∩ z = ∅)).

Choice then says simply that every choice-friendly set x has a choice set, a
set containing exactly one member of each member of x:

AC CF(x)→∃C∀B ∈ x∃!z ∈ B z ∈ C.

Finally, critical to set theory’s power — and to matters here — is the
axiom schema of Replacement, added by Fraenkel, which tells us, roughly,
that the values y of any definable functional mapping ψ(x,y) on a set A
jointly constitute a set:

F ∀x ∈ A∃!yψ→∃B∀y(y ∈ B↔∃x ∈ Aψ), where ‘B’ does not occur free
in ψ.

By ZFCU, then, we mean all of the above axioms.

1.2 Ordinals, Cardinals, and Cantor’s Theorem

In the universe of ZFC, all sets are “pure”, unsullied by the presence of
atoms anywhere in their membership ancestry. It will be important for a
number of purposes to characterize this notion formally within ZFCU. First,
we say that an object x is transitive just in case it is a set such that all of its
set members are subsets:

Tran(x) ≡df Set(x)∧∀A ∈ xA ⊆ x.

Define y to be a transitive closure of x just in case y is a smallest transitive
superset of x:

TC(x,y) ≡df x ⊆ y ∧Tran(y)∧∀z((Tran(z)∧ x ⊆ z)→ y ⊆ z).

Thus, if B is a transitive closure of A, then B contains the members of A,
the members of those members, and so on; B, that is, contains all of A’s
ancestors vis-á-vis membership. Given this, we can say that a set is pure if
it has a transitive closure that contains only sets:

Pure(x) ≡df ∃y(TC(x,y)∧∀z ∈ y Set(z)).6

6In fact, in ZFCU, every set has a unique transitive closure and, hence, we could have
provided a more elegant definition of Pure in terms of a transitive closure function; but see
fn 19 below.
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Given the above, we define the ordinal numbers to be pure sets that are
transitive and totally ordered (hence, by Fnd, well-ordered) by member-
ship:

Ord(x) ≡df Pure(x)∧Tran(x)∧∀yz ∈ x(y ∈ z∨ z ∈ y ∨ y = z).7

The less than relation on ordinals is then understood as usual simply as
membership:

x < y ≡df Ord(x)∧Ord(y)∧ x ∈ y.

The lower case Greek letters α, β , and λ will be reserved as variables rang-
ing over ordinals.

By Sep and Ext there is a unique smallest set ω satisfying Inf and it is
easy to show that ω is an ordinal; we identify the members of ω with the
natural numbers. By Fnd, every condition φ(x) satisfied by any ordinals
is satisfied by a (unique) least ordinal. Thus, in particular, every set B of
ordinals has a least element inf B, a least upper bound supB, and a least
strict upper bound sup+B.8

Functions are understood as usual as sets of ordered pairs, where an
ordered pair ⟨a,b⟩ =df {{a} , {a,b}} is defined á la Kurotowski (and, hence,
exists by Pg given a and b). Say that A is as large as B or, alternatively, that A
is the same size as B, A ≈ B, if there is an bijection from A onto B; that A is no
larger than B or, alternatively, that B is at least as large as A, A ≼ B, if there is
an injection of A into B; and that A is smaller than B or that B is larger than
A, A ≺ B, if A ≼ B but not A ≈ B. A set A is finite if A is as the same size as a
natural numbers, i.e., an ordinal α ∈ω.

It is a well-known theorem of ZFCU that every set is the same size as
some ordinal:

(1) ∀A∃αA ≈ α.

Proof (ZFCU). Let A be a set. By AC and PS there is a well-ordering R of
A. For a ∈ A, let aR be the set of R-predecessors of a, i.e., aR = {c ∈ A : Rca}.
By Sep, let C consist of those a ∈ A such that aR is isomorphic to some

7The restriction to pure sets prevents impure “ordinals” built up from a single urele-
ment a— e.g.,{a, {a} , {a, {a}}}— from counting as genuine ordinals.

8These are of course the least ordinals satisfying, respectively, the conditions x ∈ B,
∀α ∈ Bα ≤ x, and ∀α ∈ Bα < x.
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(unique) ordinal β, i.e., C = {a ∈ A : ∃β aR ≃ β}.9 Since the mapping aR ≃ β
is functional, by F, the set B = {β : ∃a ∈ C aR ≃ β} exists. By PS and Sep we
have the function f = {⟨a,β⟩ ∈ C ×B : aR ≃ β}). It is easy to verify that B is
an ordinal, that f is a one-to-one correspondence from C to B, and that
A = C.

It is important for purposes here to note that the use of the Replacement
schema F in this proof is essential.10

It follows from (1) that there is always a least ordinal as large asA, which
we identify with the cardinality of A:

|A| =df inf {α : A ≈ α}.

A cardinal number generally is thus defined to be any such ordinal:

Card(x) ≡df ∃Ax = |A|.11

I will reserve the Greek letters κ and µ as variables ranging over cardinals.
It is a simple consequence of the definition of cardinality that differences

in relative size correspond exactly to differences in cardinality:

(2) A ≺ B↔ |A| < |B|.

What gives this proposition bite, of course, is Cantor’s famous theorem,
which tells us that differences in size extend into the infinite:

(3) A ≺ ℘(A).

Proof (ZU). The function f (x) = {x} from A into ℘(A) is obviously an in-
jection, so A ≼ ℘(A). However, for any function g from A into ℘(A), the
diagonal set {x ∈ A : x < g(x)} for g cannot be in the range of g, on pain of
contradiction. Hence, g cannot be a bijection, i.e., A 0 B.

It follows straightaway from (2), (3) and the definition of cardinality that
no set’s cardinality is maximal:

(4) ∀A∃κ |A| < κ.
9By aR ≃ β, of course, we mean ⟨aR,R↾a⟩ ≃ ⟨β,∈↾β⟩.

10We know this because, e.g., level Vω+ω of the cumulative hierarchy (Devlin 1991, §2.2)
is a model of ZU+AC that contains uncountable sets (e.g., ℘(ω) ∈ Vω+2) but only countable
ordinals α < ω +ω.

11It is easy to show that this definition of the cardinals is equivalent in ZFCU to an-
other common definition that takes the cardinals to be initial ordinals: Card(x)↔ (Ord(x)∧
∀β ∈ xβ ≺ x).
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1.3 ZFCU ⊢ ~SoA∞
In set theory, to say there are at least κ atoms is to say that there is a function
f mapping each α < κ uniquely to an atom. Given such a function f , by Un
and Sep, the set {a ∈

∪∪
f : ∃α < κf (α) = a} of all the atoms in question

exists. Hence, thesis A∞ is just as well expressed by saying simply that, for
every κ, there is a set of atoms at least as big as κ:

A∞ ∀κ∃A(∀x ∈ A~Set(x)∧κ ≼ A).

Given SoA and A∞ as rendered above, it is easy to prove ~SoA∞ in ZFCU.
For assume A∞ and let B be any set of atoms. By (4), there is a cardinal κ
such that |B| < κ and so by (2) B ≺ κ. By A∞ there is a set A of atoms of at
least size κ, i.e., such that κ ≼ A. It follows directly that B is smaller than A,
B ≺ A, and, hence, that B cannot be the set of all atoms. But B was chosen
arbitrarily, so ~SoA. By conditional proof, we conclude A∞→ ~SoA, which
is just ~SoA∞.12

2 The Iterative Conception and SoA∞
Let us now consider the argument that the iterative conception is consis-
tent with SoA∞. We argue first that the iterative conception entails the
weaker conjunct SoA. The key intuitive idea in the iterative conception is
that sets are “formed” in a series of cumulative “stages” from an initial
stock of atoms. The first stage consists of all the sets — including the empty
set — that can be formed from the atoms; subsequent stages (including,
we may assume, “limit” stages that have no immediate predecessor) consist
of all the sets that can be formed from the atoms and the sets formed in
preceding stages.13

12Choice is in fact not essential to the theorem: Assume SoA∞, i.e., SoA∧A∞. By SoA,
let A∗ be the set of all atoms. By A∞, every cardinal can be injected into some subset B of
A∗ and, hence, into A∗ itself. It follows in ZFU that every well-orderable set can be injected
into A∗. But that directly contradicts Hartogs’ (1915) Theorem (which is provable in ZU).
So ~SoA∞. (My thanks to Thomas Forster for pointing out to me that the proof of Hartogs’
Theorem does not require Replacement.)

13This description of the hierarchy of stages—which follows Boolos 1971— thus doesn’t
square exactly with the cumulative hierarchy of Zermelo 1930 and, for that matter, the ac-
counts in most modern textbooks like Devlin 1991, where limit stages simply accumulate
the members of the preceding stages.
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The “process” of set formation thus yields an ever-expanding hierarchy
of stages built up over the atoms as depicted in Figure 1, with an inner cone
of pure sets built up from the empty set alone. The bottom “disk” thus rep-
resents the first stage containing all sets of atoms; “disks” occurring higher
up represent the cumulative stages arising subsequently in the process. The
sets themselves, therefore, are exactly those collections that are formed at
some stage. The argument for SoA, then, is simply this: One of the sets that
can be formed from the atoms is the set of all of them. They are, after all,
all there to be collected at the very beginning of the process. Hence, the set
of all atoms is formed at the very first stage.

Pure Sets

Im
pure Sets Im

pu
re

 S
et

s

Atoms

Figure 1: The cumulative hierarchy of stages

The argument can be more rigorously expressed in terms of the notion
of rank, defined recursively as follows:

Rnk rnk(x) = sup+ {rnk(y) : y ∈ x} .

So the rank of an object with no members — i.e., an atom or the empty set
— is 0; and that of any set A in general is the least ordinal greater than the
ranks of A’s members. Thus, the rank of a set A corresponds directly to the
stage at which it can only first be formed, the first stage of the process such
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that all of A’s members have been formed in prior stages.14 The informal
idea that each set is formed from atoms and sets that first occur “earlier” in
the process of set formation is therefore captured formally in the fact that
the rank of any member of a set A will always be less than A’s rank. The
sets, then— as opposed to “proper classes” (like the classOn of all ordinals)
consisting of objects that are formed at arbitrarily high stages — are exactly
those collections that have a rank.15 The argument for SoA can now be
recast as follows: Atoms have a rank of 0 and, hence, jointly constitute a
collection of rank 1 and, hence, a set.

It is easy now to see that A∞, hence, SoA∞, is consistent with the itera-
tive conception. The critical point is simply this: Sethood on the iterative
conception does not have anything to do with size but with structure: All
that matters in regard to the question of whether some things — the atoms,
in particular — form a set is whether or not there is an upper bound to their
ranks; how many of them there are, even if there are too many to be num-
bered by any given cardinal, is utterly irrelevant. Thus Lewis (1986, 104):
“

We do say that according to the iterative conception of sets, some
classes are ’too big to be sets’, but this is loose talk. Sheer size
is not what matters; rather, the obstacle to sethood is that the
members of a [proper] class are not all present at any rank of the
iterative hierarchy. But all the individuals, no matter how many
there may be, get in already at the ground floor. So, after all, we
have no notion what could stop any class of individuals ... from
comprising a set.

As we might put it, then, the iterative conception prevents proper classes
from counting as sets, not because they are “too big”, but because they are
“too high”. Sets have to be formed at some stage; the overly-large character

14If we think of the atoms as jointly constituting a sort of “pre-stage” S0, then the finite
ranks of pure sets are a bit out of sync with the intuitive ordering of stages. For impure
sets A, rnk(A) = α iff A is formed at stage α, for all α. This is true for pure sets B only when
α ≥ ω: Assuming ∅ is first “formed” at the first stage S1 with all other sets of atoms, then,
for finite n, B is formed at stage Sn+1 iff rnk(B) = n.

15As is well known, ZFC(U) does not countenance the existence of proper classes, al-
though there are related set theories notably, von Neumann-Bernays-Gödel set theory,
NBG that do; see, e.g., Mendelson 1997, ch. 4.
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Figure 2: The cumulative hierarchy with wide sets

of proper classes is, at it were, simply a side-effect of this structural flaw.
The flaw is not present in the collection of all atoms, even if it is too big
— or better, “too wide” — to have a definite cardinality. Hence, there is no
reason to deny that it is a set; SoA∞, that is, is intuitively consistent with
the iterative conception.

It therefore seems entirely possible that the universe of sets needs to
be conceptualized rather differently than the universe of ZFCU depicted in
Figure 1. The simplest revision seems to be one where we just broaden the
“disk” at the base of hierarchy to accommodate wide sets, as depicted in
Figure 2.16 As is clearly seen there, whereas the only interesting division
in the universe of ZFCU sets is between the pure and the impure, if SoA∞
is true, the rather more interesting divide is between the hereditarily deter-
minable and the hereditarily indeterminable — that is, between sets whose
transitive closures are narrow and sets whose transitive closures are wide
(i.e., sets that are either themselves wide or have wide sets in their ances-
try).

16A more conservative option, of course, is simply to admit A∞ and broaden the base
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3 Making Room for Wide Sets

3.1 The Source of the Disconnect

So there is a disconnect between ZFCU and the iterative conception with
regard to the possibility of wide sets. The primary source of the disconnect
is the Replacement schema F. The controversies surrounding F typically
revolve around its power to extend the cumulative hierarchy beyond what
seems warranted by the iterative conception alone, with its modest stepwise
process of set formation, even granting the existence of limit stages.17 For,
given a set A of any size, F guarantees that any conceivable way of mapping
A “upward” in the hierarchy, no matter how large the “jumps” in the map-
ping, will always terminate by some stage; hence, the range of the mapping
will constitute a set in the very next stage. Equivalently put, the range of
such a mapping on A will always be bounded in rank. For example, given
the mapping x ∈ ω ∧ y = ℵx — i.e., the mapping n 7→ ℵn that takes each
natural number n to the nth transfinite cardinal number — F guarantees the
existence of the limit cardinal ℵω (and thence also a stage containing it).
However, F’s power is a double-edged sword; and it is the other edge that
lies at the heart of the disconnect between F and the iterative conception
that arises vis-á-vis wide sets. For by guaranteeing that the range of any
mapping on any set is bounded in rank, F simultaneously restricts the uni-
verse to sets whose width does not outpace height. That is, F makes it a
condition on sethood that the images y of any mapping ψ(x,y) on a genuine
set A must be bounded in rank and hence, eventually, must all be available
to be collected into a set at some stage, as indicated in Figure 3. F, that

of atoms without attempting to accommodate wide sets. This is the picture described by
Friedman (2004), who argues that there are strong reasons for including A∞ as an axiom
of ZFCU.

17The stage theories of Boolos (1971), Scott (1974), Van Aken (1986), Uzquiano (2002),
and Potter (2004, 225ff, 296ff) that are meant to formalize the iterative conception proper
all fail to entail Fwithout the addition of formal principles that are similar in spirit to, and
at least as strong as, F. See Hallett 1984, 219–223 for additional commentary on the stage
theories of Boolos and Scott. Shoenfield (1967, 238ff) develops an informal account of the
iterative conception that includes a very strong “confinality” principle that appears to en-
tail F. Hallett (1984, 217–218) argues convincingly that this principle is itself in need of at
least as much justification as F, a claim well-confirmed by Reinhardt’s (1974) reconstruc-
tion of Shoenfield’s account, where his representation of the cofinality principle yields not
only F but the existence of a measurable cardinal.



Wide Sets, ZFCU, and the Iterative Conception 13

ψ(
x,y
) 

Figure 3: Replacement in ZFCU

is to say, forces narrowness into the concept of set contrary to the iterative
conception.

And thus the disconnect: If in fact the set theoretic universe has the
structure of Figure 2 rather than Figure 1, an application of F to sets that
are at least as wide as the universe is high could cause us to “replace” our
way out of the universe; it could enable us to prove the existence of sets
that are, in fact, “too high” to be formed at some stage of the cumulative
hierarchy, as depicted in Figure 4. This would of course lead quickly to
contradiction.

3.2 First Cut at a Solution

A hasty solution is just to abandon Replacement altogether. That would
obviously prevent the scenario of Figure 4, but at high cost. True enough,
Replacement is arguably stronger than is warranted directly by the itera-
tive conception. But the central purpose of set theory is not to axiomatize
the iterative conception but to explore the universe of sets, and that uni-
verse is greatly underdetermined by the iterative conception. A fruitful
exploration must therefore incorporate axioms that take us beyond the ba-
sic principles that the iterative conception directly warrants, axioms that
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...

ψ(x,y) 

...

Figure 4: F in the context of wide sets

derive their justification from some combination of intuitive “naturalness”
(relative to the iterative conception) and theoretical utility — which, in the
case of Replacement, is substantial. Throwing Replacement out simply to
accommodate wide sets would therefore be unnecessarily Draconian.

A gentler and more fruitful solution is simply to restrict Replacement
to the determinable sets. Determinability is naturally defined as the prop-
erty ∃κx ≈ κ of being as large as some cardinal. However, following Men-
zel 1986, we will opt instead for an equivalent definition (in ZFCU) that
both relies on a bit less machinery (notably, it does not presuppose AC) and
draws on somewhat more general intuitions about sets and size rather than
number per se. Specifically, we will look instead to the “inner core” of pure
sets within the cumulative hierarchy. Within that core, all sets are “nar-
row”, as we begin only with the empty set — as narrow a set as there could
be — and build sets by means of operations (including Replacement) that
are assumed only to yield narrow sets from narrow sets. In the presence of
wide sets, then, Replacement cannot get us into trouble so long as it only
applies to sets that are no larger than any pure set.

Accordingly, define a set to be narrow, or mathematically determinable, if
it is as large as some pure set:
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ψ(x,
y) 

•• ••

•• •• ••
•

Figure 5: Replacement restricted to determinable sets

Det(x) ≡df Pure(x)∨∃y(Pure(y)∧ x ≈ y).18

We then restrict Replacement accordingly:

F′ Det(A)→ (∀x ∈ A∃!yψ→∃B∀y(y ∈ B↔∃x ∈ Aψ)).19

The condition that a given set must be measured against the pure sets be-
fore F′ can be applied, as depicted in Figure 5, thus banishes the specter of
replacing our way out of the universe.

18The left disjunct here might seem redundant, as every set A is obviously as large
as itself — notably, for every set A there is the identity bijection f : A −→ A where
f = {⟨a,a⟩ : a ∈ A}. Hence, every pure set is determinable in virtue of the right disjunct
alone. However, proving the existence of the identity function on a set A generally — a
subset of A × A — requires either Powerset or Replacement, and we will be modifying
those axioms in ways that require that at least some pure sets — notably, the ordinals —
be provably determinable independently of them; see the following footnote.

19The Pure predicate was not defined in terms of a transitive closure function in §1.2 in
anticipation of F′ , as that function is (typically) defined by recursion on ω, and the proof
that such definitions are legitimate in general requires Replacement; since F′ presupposes
that Pure is well-defined, we would thus have been in danger of a vicious circle. Defining
Pure in terms of the relational notion TC, however, enables us to prove that the ordinals
are pure, hence determinable, without Replacement. This, in turn, enables us to use F′ to
prove that definitions by recursion on ω, and indeed any ordinal, are legitimate without
any risk of circularity.
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F′ obviously generalizes F. However, the proof of ~SoA∞ in §1.3 breaks
down if we replace the latter with the former.20 Like the iterative con-
ception itself, then, the resulting theory is silent on the matter of how
many urelements there are.21 We thereby break the dubious connection be-
tween sethood and size that is forced upon us by the standard Replacement
schema F.

This revision does bring one complication with it. Fraenkel’s Replace-
ment schema F is critical to establishing the legitimacy of definitions by
recursion on ∈ and thereby to the theorem that every set has a rank, that ev-
ery set is formed at some ordinal level in the iterative process. However, the
use of Replacement in this theorem depends critically upon the limitation
of size assumption that is built into F. That assumption has been removed
in F′, so we cannot hope to use it to demonstrate the legitimacy of the usual
definition of a general rank function that can apply to both narrow and
wide sets alike.22

Accordingly — and, arguably, fittingly, given the fundamental concep-
tual role that the idea of a well-ordered hierarchy of “levels” plays in the
intuitive underpinnings of the iterative conception — we simply introduce
the ‘rnk’ function symbol as a primitive of our language and take its usual
definition Rnk above to be an independent axiom of the system. With this
axiom, then, along with the failure of (1), we ensure that rank, rather than
possession of a definite cardinality, is the definitive characteristic of itera-
tive sethood.

Let ZFCU′ be the result of replacing F in ZFCU with F′ and adding Rnk
as an axiom.

20Specifically, the proof breaks down because it relies on (1), whose proof requires that
F be applicable to all sets. The proof in fn 12 of ~SoA∞ in ZFU also breaks down if F′

replaces F because, in the proof of Hartogs’ theorem, there is nothing to guarantee that the
set C of well-orderings of subsets of the initial set A is determinable if A itself isn’t.

21Zermelo (1930) himself built the essential “narrowness” of sets into his formal devel-
opment of the cumulative hierarchy. McGee (1997, 51) follows Zermelo on this point.

22Indeed, it is fairly easy to see how the definition might break. Say that a set A is heredi-
tarily impure if∅ is not in its transitive closure, i.e., equivalently, if every set in its transitive
closure is impure. If we weaken F to F′ , our axioms would not rule out a universe contain-
ing hereditarily impure sets of arbitrarily high rank and, hence, sets which themselves lack
a rank. In this model, that is, the universe continues to grow “beyond” the ordinals and no
sets that are part of this new growth, therefore, have a rank.
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3.3 Number, Powerset, and the Absolutely Infinite

The consistency of ZFCU′ with SoA∞ notwithstanding, modifying only the
Replacement schema and leaving ZFCU in other respects untouched leads
to awkward consequences for the notion of number. This is most obviously
the case with the Powerset axiom PS. For if we postulate a wide set A∗ of
atoms, then, by Cantor’s Theorem, its powerset ℘(A∗) will be strictly larger
than A∗, A∗ ≺ ℘(A∗); likewise ℘(A∗) ≺ ℘(℘(A∗)), and so on. But since (1)
fails in ZFCU′, so too does the definition of the cardinality operator; in
particular, A∗, ℘(A∗), ℘(℘(A∗)), ... in ZFCU′ all lack a definite cardinality.
But what else does a progression of propositions of the form A ≺ B, B ≺ C,
... indicate than a progression of increasing sizes? And what else can such
increases in size be but increases in cardinality?

There is a natural response to this situation with a strong historical
precedent. It is widely acknowledged now that, even in the earliest devel-
opments of his theory of transfinite numbers, Cantor recognized that some
collections — notably, the collection of all ordinal numbers — are them-
selves “too big” to be assigned a definite size, a definite cardinal number.
This idea led to the development of the limitation of size approach to the
set theoretic paradoxes that focuses on over-largeness per se as their source.
I am of course strongly challenging that view — it is only when a collec-
tion is over-large due to unboundedness that paradox can arise. However,
it seems to me it is quite intuitive to say that the “size” of a set that cannot
be measured by the cardinals that emerge in the course of the set forma-
tion process represents an unsurpassable — albeit mathematically indeter-
minable — limit, what Cantor called the “absolutely infinite”: an “absolute
quantitative maximum” that is larger than any set with a definite cardinal-
ity and is incapable of either determinable measure or any definite form of
increase; no two absolutely infinite sets can differ in size in any mathemat-
ically definite sense.23

In ZFCU′, then, the absolutely infinite isn’t really absolute in the Can-

23See Cantor 1967, 116 Cantor 1932, esp. 375, 404-405, Menzel 1984, Hallett 1984, 12ff
and Jané 1995. It should be noted that, although Cantor often talks as though absolutely
infinite collections are sets (and indeed occasionally refers to them as Mengen), in his later
thought he held (e.g., 1967, 114) that an absolutely infinite collection can’t be thought of
as “one finished thing”, i.e., it would seem, as a set in the fullest sense of the term. I would
therefore not want to suggest that I am spelling out a conception of set that Cantor himself
clearly had in mind.
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torian sense: because Cantor’s theorem still holds, every absolutely infinite
set is smaller — in a completely rigorous mathematical sense — than some
other absolutely infinite set. Moreover, the existence of such determinate
distinctions in size seems to suggest that one has simply not allowed the set
formation process to continue far enough to generate the cardinal numbers
necessary for representing these distinctions. Of course, any attempt to ex-
tend the hierarchy to generate larger cardinals will encounter the same dif-
ficulty anew on the assumption of an indeterminable set of atoms. Hence,
ZFCU′ appears to reflect a structurally untenable picture of the set theoretic
universe.

To correct this defect, then, the universe must be so represented by our
axioms that they do not subject the absolutely infinite to any sort mathemat-
ically definite increase through Cantor’s Theorem. One way to accomplish
this, of course, is to follow F′ in restricting the Powerset axiom to narrow
sets. But that is a strong restriction; for example, if A is wide, it blocks the
usual proof that A has a Cartesian product A ×A. But the restriction is in
fact needlessly strong; it is enough to place the determinability restriction,
not on the applicability of the axiom, but on its output: given a set A, all
the determinable subsets of A constitute a further set:

PS* ∃B∀x(x ∈ B↔Det(x)∧ x ⊆ A).

In particular, where ℘∗ is the “determinable” powerset operation given by
PS*, we are still able to derive A×A as a subset of ℘∗(℘∗(A)), for any set A.

PS* is obviously equivalent to PS under the assumption that all sets are
determinable; but without that assumption Cantor’s Theorem cannot be
proved24 and, hence, the revised axiom does not allow us to demonstrate
any definite distinctions in size between absolutely infinite sets. Further-
more, it cannot be shown any longer that the stages themselves constitute
sets at all. For while all possible sets of atoms are formed at the very first
stage, PS* only guarantees that determinable collections of them are them-
selves sets.

With this modification, then, there is no provable “expansion” of the
cumulative hierarchy from stage to stage. But shouldn’t we say more? PS*

24Specifically, where g is a function from A to ℘∗(A), if A is not determinable, the diag-
onal set {x ∈ A : x < g(x)} for g cannot be shown to be determinable and, hence, may not be
in ℘∗(A). This leaves open the possibility that g is onto.
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is only compatible with the idea of a maximal absolutely infinite; it does not
express it. Since it is only a weakening of PS, for all the axiom tells us,
there could still be definite size differences within the absolutely infinite.
To rule this out, an additional axiom is needed. One possibility is to assert
explicitly that all indeterminable sets are the same size:

Max (¬Det(A)∧¬Det(B))→ A ≈ B

However, by my lights, this axiom itself constitutes an unjustifiably definite
fact about the absolutely infinite — from the fact that there is no mathemat-
ically definite increase within the absolutely infinite, it does not obviously
follow that distinct absolutely infinite sets should be explicitly comparable,
i.e., that there should exist a bijection between any two of them. I therefore
suggest the more modest axiom that a definite distinction in size between
sets can exist only when the smaller of the two is determinable:

Det A ≺ B→Det(A).

Although weaker than Max, Det nonetheless prevents the sort of def-
inite size differences between absolutely infinite sets that are provable in
ZFCU′. On the assumption of a wide set of atoms, then, we are led to a
rather different, “cylindrical” picture of the universe, as depicted in Figure
6.25 For, as the universe is absolutely infinite from the start on that assump-
tion, under PS*, although infinitely many new sets appear at each stage of
the cumulative hierarchy, there is no mathematically definite increase in its
“girth”.

3.4 Likewise Choice?

Considerations similar to those in the preceding section might suggest that
a corresponding modification of AC is warranted. For suppose the set A∗ of
atoms is indeterminable and, hence, absolutely infinite. Then if we place
no restrictions on Choice, there is a well-ordering R of A∗. Reasoning anal-
ogously to the above, since A∗ is absolutely infinite, the “order type” of R

25Figure 6 is a bit misleading insofar as it suggests that the growth of the hereditarily
determinable sets will eventually catch up to and, indeed, outpace the hereditarily inde-
terminable sets, but this is of course only a side-effect of the author’s limited skills as a
graphic artist.
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Figure 6: The cumulative hierarchy with absolutely infinite sets

should represent an immeasurable ordinal maximum. But let a0 be the R-
least element of A∗ and define R+ such that, for x,y ∈ A∗, R+(x,y) iff x , a0
and either R(x,y) or y = a0. (R+, that is, is just like R except that a0 is now
“R+-greater than” all other atoms.) Since we can map ⟨A∗,R⟩ isomorphically
into ⟨A∗,R+⟩ but not vice versa, ⟨A∗,R⟩ is intuitively “shorter” than ⟨A∗,R+⟩;
indeed, intuitively, the “order type” of the latter is the “successor” of the
“order type” of the former. But, analogous to the situation with Powerset,
there are no corresponding ordinals to represent this fact and this, in turn,
warrants restricting AC to determinable sets.

There is a flaw in this reasoning, however. For the general proof that,
given AC, an arbitrary set A is well-orderable constructs a well-ordering by
means of a choice function on ℘(A)\{∅}. But PS* yields only the set ℘∗(A) of
determinable subsets of A and, hence, in concert with AC, guarantees only
that determinable sets are well-orderable. So the inference from AC to the
well-orderability of A∗ in the argument above fails.

I believe this comports well with our reasoning thus far. Intuitively, the
powerset operation “generates” new levels of the iterative hierarchy and,
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hence (as we’ve seen and as we will argue further shortly), the extent of
its ability to do so can rightly be questioned when it leads to conflict with
other intuitions. By contrast,AC does not involve any upward growth of the
hierarchy; given a choice-friendly set A, AC only postulates the existence
of a set CA of members of members of A and thus a set whose members
all already exist “prior” to A in the hierarchy. Moreover, CA is no larger
than A. Hence, on iterative grounds CA “ought” to exist and there are no
overriding considerations of size that emerge from the assumption that it
does. Thus, there seem to be no principled objections to AC in the context
of wide sets beyond standard qualms about its nonconstructive character
and its allegedly unintuitive consequences.26

3.5 Replacement Redux

If A is an indeterminable set, our modified axioms PS* and F′ leave us with-
out the ability to prove the existence of certain intuitively unproblematic
sets. For example, for atoms a, let A∗a be A

∗ \ {a}; then, as things stand, we
are unable to prove that there is a set {A∗a : a ∈ A∗} comprising the values of
the mapping a 7→ A∗a on A∗. But these values are all “constructed” along
with A∗ at the very first stage and, hence, are “available” to form a set at
the next stage; moreover, there are no more of them than there are atoms
to conflict with our conception of the absolutely infinite. So, as with choice
sets, there seems no principled reason to deny that the A∗a constitute a set.

Fortunately, a bit of reflection reveals that the modification of Replace-
ment that gave us F′ — restricting Replacement’s applicability to deter-
minable sets — is in fact unnecessarily strong. The purpose of the restric-
tion was to satisfy the central structural constraint on set formation, namely,
boundedness in rank. Since F′ is precisely what guarantees that the range

26See, e.g., Fraenkel et al. 1973, 80–86. It is chiefly for these reasons that I have opted
for AC rather than its ZF-equivalent that every set of nonempty sets has a choice function:

ACF ∀x ∈ A∃y y ∈ x→∃f ∀x ∈ A f (x) ∈ x.

For while a choice function for a setA is of no greater cardinality thanA, it is of higher rank
than A. Hence, it involves us in questions concerning the nature of the upward growth of
the hierarchy beyond A which, as we’ve argued, requires careful consideration when A is
indeterminable. The existence of choice functions thus seems neither as immediate nor as
intuitively unproblematic as the existence of choice sets. (That said,ACF is in fact provable
in our final theory ZFCU*.)



Christopher Menzel 22

of any mapping on a determinable set is bounded in rank, the restriction
in question is obviously sufficient for satisfying this structural constraint.
But it isn’t necessary. For suppose we don’t know if a given set A is de-
terminable, or we even know flat out that it is not, but that we can also
show independently that the range of a given (functional) mapping ψ on A
is bounded in rank; then the structural constraint is again satisfied. And
because the functionality of the mapping guarantees the range is no larger
than A, there is no reason to deny that the range of the mapping constitutes
a set.

More precisely, then, say that ψ (in which, typically, ‘x’ and ‘y’ occur
free) is bounded above on a set A, BA(ψ,A), just in case such a bound exists:

BA(ψ,A) =df ∃α∀x ∈ A(ψ→ rnk(y) < α).27

And we now say that the range of a mapping ψ on a set A constitutes a set
so long as A is either determinable or ψ is bounded above on A:

F* (Det(A)∨BA(ψ,A))→ (∀x ∈ A∃!yψ→∃B∀y(y ∈ B↔∃x ∈ Aψ)).

So revised, our schema now applies to determinable and indeterminable
sets alike but enforces, not a limitation of size, but a more general limitation
of height on the collections that can count as sets, as desired.28 We depict
the effect of F* in our “cylindrical” universe of sets in Figure 7.

To illustrate the use the axiom with the example above: By the rank
axiom Rnk, for atoms a, rnk(a) = 0, so rnk(A∗a) = 1. Hence, the formula ‘y =
A∗x’ is bounded above on A∗ by 2 so, by F*, the set {y : ∃x ∈ A∗ y = A∗ \ {x}} =
{A∗a : a ∈ A∗} exists.29

27Note we cannot replace the determinability condition of F′ with this condition. For
we need to be able to prove all of the usual ordinals of ZFC exist independently of the
boundedness condition to have them available for applying the condition. See also fns 19.

28van Aken (1986, 1003) comes very close to expressing the idea underlying F*: “For a
set to exist, it suffices that the set either is small enough or has elements of bounded rank.”
However, this idea (which is formalized in van Aken’s schema RC of rank comprehen-
sion (ibid., 995)) is stronger than F*, since as it guarantees that any collection of things of
bounded rank is a set, whereas F* in effect requires a demonstration that, for any bounded
collection of things, there are no more of those things than there are members of some
(possibly wide) set. As a consequence, stages in the iterative hierarchy themselves turn out
to be sets in van Aken’s theory and so (given Choice) determinability and boundedness in
rank turn out to be coextensive. So, in the end, despite the appearance of a distinction be-
tween determinability and boundedness in rank in van Aken’s quote above, the distinction
collapses in his theory.

29Spelling out ‘y = A∗x’ a bit more correctly: ‘∃A(∀z(z ∈ A↔ ~Set(z))∧ y = A \ {x}).
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...

ψ(x,y) 

...

Figure 7: F* in the cumulative hierarchy

Let ZFCU* be the result of replacing Fwith F* and PSwith PS* in ZFCU
and adding Rnk andDet as axioms. ZFCU* is obviously consistent if ZFCU
is, since ZFCU*+∀ADet(A) just collapses into ZFCU (plus appropriate def-
initions). However, unlike ZFCU, ZFCU* is consistent with SoA∞ (relative
to an extension of ZFC— a proof is sketched in the Appendix). And, unlike
ZFCU′, ZFCU* avoids the disconnect between relative size and the posses-
sion of a definite cardinality.

3.6 Are We Any Better Off?

Perhaps the strongest objection to ZFCU* is this: ZFCU*, in particular PS*,
reintroduces the same sort of tensions with the iterative conception that
motivated our project in the first place. For suppose SoA∞, i.e., that, at the
very first stage of set formation, we find a wide set A∗ of atoms. Intuitively,
at that same stage, every other set of atoms is also formed. Hence, at that
stage all of A∗’s subsets are all there to be collected, just as all the atoms
are prior to the first stage. Hence, the set of all those subsets should be
formed at the very next stage. Thus, one might argue, there is no genuine
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philosophical win here; the same tension with the iterative conception that
arises for ZFCU vis-á-vis a set of all atoms arises straightaway “one level
up” for ZFCU* vis-á-vis a set of all sets of atoms.

First, as noted briefly in the following section, from a more pragmatic
point of view, allowing a set of atoms has its advantages for philosophical
applications. That aside, it is still far from clear that the two situations
are on a par. The iterative conception tells us that, at a given stage, all the
sets exist that can be formed from the objects in preceding stages — call
this the iterative intuition. The full power set axiom PS is but one possible
formal expression of this intuition and not obviously the most fitting. For,
in fact, while our grasp of the axiom is strong and intuitive for finite sets,
it is tenuous with regard to infinite sets. Notably, by a well known result
of Easton (1970), beyond Cantor’s Theorem, we have no clear grasp of the
effects of the full powerset operation on infinite sets; in particular, there is
basically no upper bound on how large the power set ℘(N) of the set N of
natural numbers might be. Indeed, so little is known of the behavior of full
powerset that Hallett (1984, 208) is driven to conclude that the operation
“is just a mystery”.

Powerset is thus both extremely powerful and extremely mysterious,
and its mysteries suggest the need for some measure of theoretical justi-
fication for determining the extent to which its unrestricted applicability
is the proper expression of the iterative intuition. Its applicability to finite
sets is obviously warranted, as full powerset just follows from logic. Be-
yond this, the existence of our two most fundamental number systems, N
and R, and the striking relation between them — that R ≈ ℘(N) — pro-
vides compelling warrant for the applicability of full powerset to countable
sets. Higher analysis in turn warrants its applicability to sets the size of
the continuum. More generally, and more liberally, there seems to be no
compelling reason to restrict its applicability to sets already generated from
unrestricted powerset as we make our way up the ordinal backbone of the
pure cumulative hierarchy V and, therefore, to sets the same size as any of
those sets. We seem, therefore, to have a consistent general justification for
the applicability of Powerset to determinable sets. Finally, if somewhat more
tentatively, as it leads to no conflicts with our notions of size and number,
we can generalize one last step to the formation of the determinable subsets
of any given set into a further set — i.e., to PS*.
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It is the examples of N and R, then, and the relation between them that
gets the justification of PS* off the ground. However, we have no analogous
examples of a powerset-based relation between indeterminable sets; indeed,
we have found strong arguments for the idea that progressions of increasing
size should also reflect relations between cardinals and, hence, that there
should be no definite differences of size among indeterminable sets.

Given these reflections, then, as I see it, the burden for justification lies
not on our “restricted” Powerset axiom PS*, for which we can develop a
comprehensive justificationwith regard to determinable and indeterminable
sets alike based both upon the iterative intuition and actual structures out
of mathematical practice, but rather on its unrestricted counterpart PS, for
which we cannot find a parallel justification. PS*, rather than full PS, ap-
pears on reflection to be the more warranted expression of the iterative in-
tuition.

4 Summary and Final Reflection

The proposition SoA∞ that there is a wide set of atoms — a set of bounded
rank but indeterminable size — is intuitively consistent with the iterative
conception of set but formally inconsistent with ZFCU, a disconnect traced
to the Replacement schema F. A simple modification F′ of F led us to a the-
ory ZFCU′ that is consistent with SoA∞ and, hence, arguably more faithful
to the iterative conception than ZFCU. However, ZFCU′ introduces an un-
comfortable new disconnect between the notions of relative size and num-
ber: as full Powerset PS is an axiom of ZFCU′, there are still definite gra-
dations of size among wide sets, their lack of definite cardinalities notwith-
standing. Cantor’s intuition that the absolutely infinite should not be ca-
pable of determinate increase motivated a restriction on Powerset that only
yields a set comprising the “narrow” subsets of a given set. Combined with
a strengthening F* of F′, we arrived at a theory ZFCU* that is consistent
with the existence of wide sets but which seems to preserve Cantor’s intu-
ition. Finally, we argued that the restrictions on full powerset in ZFCU* can
be reconciled with the central intuition underlying the iterative conception
of set.

Our work here was prompted initially by an observation concerning
Lewis’s modal realism. So it would be appropriate to note very briefly the
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major implications of our results for Lewis’s metaphysics. Because Lewis
needs arbitrary sets of atoms in his theory to serve as properties and propo-
sitions, and arbitrary sets of pairs of atoms to serve as relations (notably,
counterpart relations), the argument from the principle of Recombination
R to A∞ led him to reject R.30 As that argument depends on SoA∞’s in-
consistency with ZFCU, the argument fails if ZFCU is replaced by either
of the theories developed here; in both, one can quantify freely over prop-
erties, propositions, and relations. The set ℘∗(A∗) of all properties in our
philosophically preferred theory ZFCU* is somewhat thinner than the full
powerset; the possible limitations of this for the modal realist is left as a
matter for further investigation. However, as PS* and F* together permit
the construction of infinitely many complex sets of arbitrarily high rank
over A∗, wide and narrow alike, it is conjectured that ZFCU* provides the
modal realist with all the set theory needed for philosophical applications
of possible worlds.“31

Appendix: Relative Consistency Proofs

Let ZFC+ be ZFC + “There is an inaccessible cardinal”. We show that both
ZFCU′ and ZFCU* are consistent with the existence of a wide set of atoms
relative to ZFC+. Let κ be the least inaccessible and let A∗ = {⟨κ,α⟩ : α < κ}.
A∗ will serve as the set of atoms for our models.

AModel of ZFCU′ +SoA∞. For α < κ and limit ordinals λ ≤ κ, let

U0 = A∗

Uα+1 = Uα ∪℘(Uα)
Uλ =

∪
α<λ

Uα

Let U = Uκ. To facilitate matters, let ρU : U −→ κ be the obvious “rank”
function for U : ρU (x) = sup+

{
ρU (y) : y ∈U ∧ y ∈ x

}
.32 Now, as definitions

can be understood as axioms that conservatively extend a given theory, it is

30See 1986, 103–104 and Forrest and Armstrong 1984.
31Lewis himself explored an alternative approach to set theory in his 1991.
32Note, importantly, since ⟨κ,α⟩ = {{κ} , {κ,α}}, neither {κ} ∈ U nor {κ,α} ∈ U so we have

ρU (⟨κ,α⟩) = 0 for the “atoms” ⟨κ,α⟩ of our model.
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easiest to consider the theory that results from adding TC, Pure, Det, and
rnk to the language of ZFCU′ and extending ZFCU′ with the corresponding
definitions above. (We can thus suppose that the antecedent ‘Det(A)’ of F′

is initially spelled out in the primitive terminology of ZFCU′.) Accordingly,
first, we define a “transitive closure” function on U in terms of an auxiliary
function g :U ×ω −→U :33

g(x,0) = x

g(x,n+1) =
∪
(g(x,n) \A∗)∪ g(x,n)

Thus, given g(x,n), g(x,n + 1) holds on to everything in g(x,n) and adds to
it the union of all the “sets” in g(x,n). (The “atoms” of our model have to
be excluded from the application of the union operator, of course, because
they are in fact themselves sets of the form {{κ} , {κ,α}}.) Given g, we define
our transitive closure function as the closure of g:34

tcU (x) =
∪
n<ω

g(x,n)

Now define the interpretation M = ⟨U,I⟩ of the (extended) language of
ZFCU′ such that:

• I(‘∈’) = {⟨a,b⟩ ∈U ×U : a ∈ b}

• I(‘Set’) =U \A∗

• I(‘TC’) = {⟨a,b⟩ : a ∈U \A∗ ∧ b = tcU (a)}

• I(‘Pure’) = {A ∈U : ∀a ∈ tcU (A)a < A∗}

• I(‘Det’) = {A ∈U : |A| < κ}

• I(‘rnk’) = ρU .

It is obvious that Rnk is true inM and, as the set A∗ of “atoms” is an in-
determinable set inM, it is easy to see that A∞ (as spelled out formally in

33The idea behind the inductive clause in the definition here is that
∪
(g(x,n) \A∗) pre-

vents “urelements” ⟨κ∗,α⟩ from being “decomposed” by the union operator; and the pur-
pose of (g(x,n)∩A∗) is to enable g, at each level g(x,n+1), to carry along the “urelements”
that were revealed in the preceding level.

34Because sets are well-founded eventually for some n, g(x,m) = ∅ for all m > n.
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§1.3) and SoA are true inM as well.35 Moreover, since κ is a limit ordinal
> ω, it is straightforward to verify that all of the axioms of ZU + AC are also
true inM.

The only less than obvious case is the Replacement schema F’. We first
note the following easily verified

Fact: For x ∈U , if ρU (x) < α, then x ∈Uα.

So suppose A ∈ U \A∗ and that A is “determinable” inM, i.e., that |A| < κ,
and that ψ is a formula that, relative to some variable assignment s, satis-
fies the antecedent of the consequent of F′. That is, where ψMs = {⟨a,b⟩ :
M, s

xy
ab |= ψ}

36 is the mapping determined by ψ, suppose ψMs is functional
on A, i.e., that, for all a ∈ A, there is a unique b such that ψMs (a,b). Let
B = ψMs [A] =

{
b : ∃a ∈ A,ψMs (a,b)

}
be the range of the mapping ψMs on A; we

need to show that B ∈U . Since the mapping ψMs is functional on A, it must
be that |B| ≤ |A|. Hence, since |A| < κ, |B| < κ so there is a cardinal λ < κ such
that |B| = λ. Hence, ρU [B] =

{
ρU (b) : b ∈ B

}
is no larger than λ and hence,

as κ is inaccessible, ρU [B] must have a strict upper bound α < κ lest it be
cofinal in κ. So for all b ∈ B, ρU (b) < α. Hence, by the above Fact, B ⊆ Uα
and so B ∈ ℘(Uα) ⊆Uα+1 ⊆U , i.e., B ∈U .

A Model of ZFCU* + SoA∞. We can transform the argument above so as
to yield a model of ZFCU* by restricting the “growth” of each level to sets
of size ≤ κ. Accordingly, let ℘κ(A) = {B ∈ ℘(A) : |B| ≤ κ}; then, for α < κ and
limit ordinals λ ≤ κ, let:

U0 = A∗

Uα+1 = Uα ∪℘κ(Ua)
Uλ =

∪
α<λ

Uα

Again we let U = Uκ and we define the interpretationM = ⟨U,I⟩ exactly as

35More specifically, regarding A∞: For cardinals λ < κ (hence for the cardinal numbers
of our modelM), let A∗λ be the set of “atoms” {⟨κ,α⟩ : α < λ}. We note first that, since A∗λ ⊆
A∗ = U0, it follows that A∗λ ∈ ℘(U0) ⊆ U1 ⊆ U and hence that A∗λ is a set inM. Obviously
the mapping fλ(α) = ⟨κ,α⟩, for α ∈ λ, injects λ into A∗λ. We need only show that fλ ∈ U .
But this is clear, for fλ is the set {⟨α,⟨κ,α⟩⟩ : α < λ} ⊆ ℘(℘(λ ∪A∗)) ⊆ ℘(℘(Uλ)) ⊆ Uλ+2, so
fλ ∈ ℘(Uλ+2) ⊆Uλ+3, so fλ ∈U . Regarding SoA: A∗ ∈ ℘(A∗) = ℘(U0) ⊆U1.

36As usual, for variables ν, sνa = (s \ {⟨ν,s(ν)⟩})∪ {⟨ν,a⟩}.
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above (relative, of course, to the new definition of U ). The truth of A∞ and
SoA inM follow more or less as in fn 35 and the truth of Rnk and all the
axioms of ZFCU* other than PS* and F* are unaffected by the modification
in the definition of U .37 AndDet is obviously true by construction, as there
are no sets of size > κ in U .

Regarding PS*, suppose A ∈ Uα and let ℘<κ(A) = {B ∈ ℘(A) : |B| < κ} be
the set of all of A’s “determinable” subsets. We need to show that ℘<κ(A) ∈
U . It is easy to show by the construction of U that all of A’s subsets are also
in Uα and, hence, that ℘<κ(A) ⊆ Uα. Hence, ℘<κ(A) ∈ ℘(Uα) ⊆ Uα+1 ⊆ U , so
℘<κ(A) ∈U , as required; so PS* is true inM.

As for F*, suppose ψ, s, and ψMs are as above and that, for a given A ∈
U , either (a) |A| < κ or, where once again B = ψMs [A], (b) ρU [B] is strictly
bounded above by some α < κ. In either case, it must be that B ∈ U . In the
former case (a), we argue exactly as above except that, in the final sentence,
we replace the powerset operator ℘ with ℘κ. In the latter case (b), by our
Fact again, every element of Bmust be in some Uβ , for β < α, and, hence, by
the cumulative nature of the “stages” Uγ , B ⊆Uα. Since A ∈U , it follows by
our construction that |A| ≤ κ so, since ψMs is functional on A, it must also be
that |B| ≤ {A} and hence that |B| ≤ κ. So B ∈ ℘κ(Uα) ⊆Uα+1 ⊆U , i.e., B ∈U .
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