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Abstract. In this paper I present a precise version of Stalnaker’s thesis and show that it is both
consistent and predicts our intuitive judgments about the probabilities of conditionals. The thesis
states that someone whose total evidence is E should have the same credence in the proposition
expressed by ‘if A then B’ in a context where E is salient as they have conditional credence in the
proposition B expresses given the proposition A expresses in that context. The thesis is formalised
rigorously and two models are provided that demonstrate that the new thesis is indeed tenable
within a standard possible world semantics based on selection functions. Unlike the Stalnaker–Lewis
semantics the selection functions cannot be understood in terms of similarity. A probabilistic account
of selection is defended in its place.

I end the paper by suggesting that this approach overcomes some of the objections often levelled
at accounts of indicatives based on the notion of similarity.

A popular form of contextualism concerning indicative conditional statements embraces
the following three theses:

CONTEXTUALISM: (i) Indicative conditionals semantically express (i.e., can be
used to assert the truth of ) propositions. (ii) Which proposition is asserted by an
utterance of an indicative conditional sentence sometimes depends on the context
in which it is uttered. Moreover, (iii) which proposition is asserted depends, absent
other sources of context sensitivity, on some piece of evidence or knowledge that
is salient in the context of utterance (perhaps the utterer’s evidence or some pooled
piece of evidence being assumed by the participants of the conversation.)

Contextualism holds a distinguished place in recent philosophy, and for good reason.1

It promises to answer a number of rather puzzling issues in the philosophy of condition-
als – the apparent validity of ‘or-to-if’ arguments and the so-called ‘Gibbardian stand-
offs’ to name but a couple of examples (see Stalnaker, 1975; Van Rooij, 1999) While
it also has its critics2 it is interesting to note that, by contrast, the context sensitivity
of conditionals is all but taken for granted by linguists working within the framework
of Kratzer’s (see Kratzer (1986)). This work draws on connections between modals
and conditionals, and the context sensitivity of former, at least, appears to be quite
pervasive.

My aim here, however, is not to defend contextualism or its applications but to show that
contextualism can be put to work to shed light on another difficult issue, namely that of

Received: March 1, 2014.
1 See, for example, Stalnaker (1975), Van Rooij (1999), Nolan (2003), and Santos (2008).
2 There is a long tradition rejecting thesis (i) of the contextualist program: see Adams (1975),

Edgington (1986), and Bennett (2003) for representative examples. More recently some theorists
have attempted to accommodate the data keeping (i) but rejecting (ii) by adopting a form of
relativism about the propositions expressed by conditional sentences; see Weatherson (2009) for
discussion of this approach.
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providing a theory that predicts our intuitive judgments about the probability of conditional
statements. As early writers noted, contextualism provides a potential way around the
triviality results. However, despite some limited initial optimism regarding this project
(see in particular Harper (1976) and Van Fraassen (1976)), few philosophers still see this
as a viable option. Most likely this is due to the fact that existing constructions either
fall apart when one considers conditionals embedded within other conditionals or are not
compatible with an orthodox possible worlds semantics such as a selection function se-
mantics. Finally these constructions invariably require that the locus of context sensitivity
be, not a salient piece of evidence in accordance with thesis (iii), but an entire creden-
tial state. It is therefore hard to integrate such approaches into an orthodox contextualist
framework of the kind that is now popular in linguistics and philosophy. In fact the only
construction I know of that overcomes the first limitation, that of accommodating embed-
ded conditionals, is given in van Fraassen’s (1976), and this falls afoul of the other two
constraints.

In Section 1 of this paper I will present and defend a weakening of a principle known
as ‘Stalnaker’s thesis’. I show that the thesis originally presented by Stalnaker, in addi-
tion to being fraught with difficulties arising from the triviality results, is unfriendly to
contextualism. I argue that my weakened principle is both strong enough to predict our
intuitive judgments about the probabilities of conditionals and compatible with contextu-
alism while also being weak enough to avoid the triviality results. In Section 2, I give the
principle a possible world semantics that is intended to integrate straightforwardly with
contextualist accounts of indicatives. Unlike the Stalnaker–Lewis semantics the selection
functions cannot be understood in terms of similarity. A probabilistic account of selection
is defended in its place. The appendices contain two different tenability results establishing
the consistency of the new principle with the semantics.

§1. Contextualism and Stalnaker’s thesis. Suppose that a card has been picked at
random from a standard 52 card deck and placed face down in front of you. Assuming that
you are not more confident that some card will be selected over any other, how confident
should you be about asserting the following sentences?

1. The selected card is an ace if it’s red.

2. It’s spades if it’s black.

3. It’s diamonds if it’s an eight.

To be clear, when I ask how confident you should be about asserting a sentence I mean:
what degree of belief should you have in the proposition that you would assert by uttering
that sentence. The obvious answers to these questions are, in order: 1

13 , 1
2 , and 1

4 . For
example, to calculate 2 I just determine what proportion of black cards are spades. Since
one in two black cards are spades the answer is 1

2 .
An initially attractive theory, known as ‘Stalnaker’s Thesis’3, gives us a general way to

make these calculations. It states:

3 Not to be confused with Adams’ Thesis which employs the notion of ‘assertability’. The
assertability of a conditional, according to Adams, need not be identified with the probability
of a proposition.
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STALNAKER’S THESIS: The degree of belief one should assign to a conditional
sentence, ‘if A then B’, should be identical to one’s conditional degree of belief
in B given A.4

In Stalnaker (1970) Stalnaker works with a theory of probability that assigns degrees
of belief and conditional degrees of belief to sentences and not, as is normally done, to
propositions. In what follows I shall read the thesis as saying that, if p, q, and r are the
propositions that would be asserted by the sentences A, B and ‘if A then B’ in a given
context, then one’s degree of belief in r must be identical to one’s conditional degree of
belief in q given p.

Stalnaker’s thesis gets its appeal from its simplicity and its ability to straightforwardly
explain the probability judgments reported in 1–3. However, enthusiasm for the thesis
quickly died down as a slew of results trivialising this theory appeared (see Bennett, 2003,
Chapter 5), for a good summary of the highlights) and Stalnaker himself quickly dropped
the theory.

While I find this literature to be conclusive with regard to the thesis (at least as currently
interpreted) there is an even more basic reason to be dissatisfied with Stalnaker’s theory if
you are a contextualist of the stripe described in the opening paragraph. According to the
contextualist, there are lots of conditional propositions that one and the same conditional
sentence, ‘if A then B’, can be used to assert, but only one conditional probability for
the probabilities of those propositions to be identical with (provided neither A nor B is
themselves context sensitive.)

To spell the worry out in full, suppose that neither A nor B is context sensitive and
express p and q respectively in every context. Assume also that I can assert ‘if A then B’ in
one context and thereby assert the proposition r , and in another context the proposition r ′.
Since, by assumption, r and r ′ are two different propositions, there is no general reason
why one must assign them equal confidence. Yet according to Stalnaker’s thesis, one’s
degree of belief in both r and r ′ must be identical to one’s conditional degree of belief
in p given q. In other words, Stalnaker’s thesis entails that one must be equally confident
in r and r ′ after all. For a contextualist this ought to be extremely puzzling. For after
all, people are driven to contextualist theories by cases where one hears two utterances
of the same sentence in which one seems to be true while the other seems to be false.
If Stalnaker’s thesis were true then these seemings would be utterly irrational—any two
utterances of a conditional sentence must express equally probable propositions, so no
rational person could be even somewhat confident in the truth of one and the falsity of the
other.5

What to make of these problems? One radical response, often made in connection to
the triviality results, is to take these highly theoretical arguments to undermine the original
probability judgments to 1–3.6 To my mind this response is excessive: triviality results
do not cast doubt on particular probability judgments such as those reported in 1–3. They
merely refute a general theory that predicts those judgments—the judgments themselves

4 If Cr is a function representing your degrees of belief, then your conditional degree of belief in
B given A, Cr(B | A), is defined to be Cr(A∧B)

Cr(A) when Cr(A) > 0.
5 Indeed the possibility of having unequal degrees of confidence in r and r ′ is essential if we are

to account for the puzzles for which contextualism was introduced to explain (see, in particular,
Gibbard’s puzzle (Gibbard, 1981).

6 I do not mean include those, such as Adams, who rejects probabilities in favour of talk about
‘assertabilities’. The people who make the radical response disagree about the numerical values.
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do not imply the refuted theory. Furthermore, if the answers I listed to 1–3 are not correct
then those who make the radical response owe us an answer to the question: what are the
correct answers to these particular questions? If they are not respectively 1

13 , 1
2 , and 1

4 then
what on earth are they?

The contextualist, in my view, has a better response; one that predicts the intuitive prob-
ability judgments in 1–3, but does not commit us to Stalnaker’s thesis. According to the
contextualist the judgments we make about the probabilities of conditional sentences are
determined by two pieces of evidence. One piece of evidence determines which proposition
is asserted by the utterance of the conditional being evaluated, the other is the evidence
you actually possess, which determines what your degrees of belief are if you’re rational
(i.e. determines the probability function with which we make the actual judgments of
probability.) In other words, the former determines which proposition is to be evaluated,
and the latter determines how probable that proposition is. I propose that when these two
pieces of evidence are identical, the probability of the conditional and the conditional
probability coincide – the probability of the proposition you assert with a conditional when
E is salient is the same as the conditional probability when your total evidence is E .

The revised thesis entails, for example, that when the utterer’s evidence is identical to
the contextually salient evidence she will assert a proposition using a conditional sentence
that she takes to be exactly as probable as the conditional probability of the proposition ex-
pressed by the consequent on the proposition expressed by the antecedent. This is plausibly
what is going on when we make the judgments reported in 1–3.

Let us write A →E B for the conditional expressed when evidence E is salient. The
informal version of our revised thesis says:

CP Cr(A →E B) = Cr(B | A) provided Cr is a rational credence for an agent whose
total evidence is E at world x .

The above instance of the thesis is silent about the credences of agents whose total ev-
idence is not E . That said, whatever your evidence is there will be another conditional
corresponding to that evidence and another instance of the thesis which does apply to you.

In order to make this thesis precise two questions must be addressed. Firstly, we must say
how the contextually salient piece of evidence determines which proposition is expressed
by a conditional sentence. Secondly, we must say what it is for a credence to be rational
given a total body of evidence E .

It turns out that the first question can be treated in very different ways; the models
constructed in appendices §4 and §5 provide two such treatments. For the time being let
us just use the notation A →E B to represent the proposition that would be expressed by
the conditional, in a context in which evidence E (representing an accessibility relation)
is salient, whose antecedent expresses A and consequent expresses B. In order to address
the second question I shall adopt a relatively standard Bayesian picture according to which
the epistemic state of a rational agent at a time and world w is represented by a pair
consisting of a probability function Pr and an accessibility relation E . Pr represents the
agents initial probability function, sometimes called a ‘prior’ or an ‘ur-prior’.7 E represents
their evidence at t at each possible world by mapping each world x to the agents total
evidence at x , E(x) = {y | Exy}. In order to determine what that agent’s informed

7 Sometimes philosophers use the word ‘prior’ to represent an agent’s credences before they have
undergone some episode but in which they are still informed about some matters. This is not how
I am using it—by an ‘ur-prior’ I mean the credences of a completely uninformed agent.
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credences are at a time, t and world w, assuming she is rational, we condition the agent’s
ur-prior on her total evidence at t and w: if Pr is her ur-prior and E(w) her total evidence
at w and time t then her credence at t is Pr(· | E(w)) if she is rational. My conditional
credence of B on A at t is therefore just Pr(B | A ∩ E(w)). The revised thesis says that
this is just identical to my credence in A →E B at t : Pr(A →E B | E(w)). Thus the
precise statement of the thesis is

CP Pr(A →E B | E(w)) = Pr(B | A ∩ E(w)) for every rational ur-prior Pr ,
evidence E and world w.

Here E(w) is the agents total evidence at possible world w. Simplifying by writing CrE

for my credences at w with evidence E (i.e. CrE (·) = Pr(· | E(w))) we get the informal
thesis mentioned above.

Of course the appeal to ur-priors is controversial and questions about their status are
important, however, I shall not delve into those issues here. I expect the thesis to be
formulable without them, however the presentation of the principle CP in terms of them is
particularly simple and will be easy to use in what follows.8

1.1. Evidence. The evidence in favour of CP, I claim, is exactly the evidence usually
adduced in favour of Stalnaker’s thesis. Stalnaker’s thesis, at least as I have precisified it, is
more general: it implies, for example, that if I express a proposition, p, with an utterance of
an indicative conditional relative to my evidence, and you were to evaluate this proposition
by your evidence you would assign it the conditional probability of the consequent on the
antecedent. It is here that the two theories diverge.

To prize apart the two theses, then, we have to consider a case where the evaluator’s
evidence and the contextually salient evidence are distinct. Thus we want a probability
judgment associated with a conditional utterance made in a context other than your own.
The problem is this: when you hear an assertive utterance of a conditional your evidence
usually changes in such a way that your evidence matches, in the relevant matters, the
person who is making the utterance. In these cases the evaluator’s evidence and the con-
textually salient evidence are not so different after all. Thus getting concrete judgments of
probability about the propositions expressed by people who have different evidence than
you do is a hard task; we shall have to be a bit more indirect than that. At the same time
this point is one of the principal virtues of the theory I am proposing—Stalnaker’s thesis
only seems to be generally true because the cases that appear to confirm it are the special
cases in which it is true. The contextually salient evidence and the evaluators evidence are
almost always the same, so the cases that disconfirm Stalnaker’s thesis are hard to come by.

I’ll start by showing that the judgments that motivate Stalnaker’s thesis are really in-
stances of CP. Then I will try and show, indirectly, that probabilities of conditionals and
conditional probabilities come apart when the evaluator’s evidence and the contextually
salient evidence are different.

Let us begin with a typical example of a probability judgment involving an indicative
conditional. Suppose that Alice and Bob know that there was a small chance a given fair
coin was flipped earlier today. Alice asks Bob how probable he thinks it is that it landed
heads if it was flipped, and he answers that it is a half since all they know is that the coin is
fair. Their evidence here is incomplete: neither of them know whether the coin was flipped

8 For example, if you can make sense of a credence function being ‘rational to have when your total
evidence is E’ you can just stick to the informal version of CP that does not invoke ur-priors.
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or whether it landed heads or tails if it did. On the other hand, they both know that there
is a coin, that it’s fair and so on. Thus it is this knowledge that determines both which
question is asked when Alice utters the question ‘how probable do you think it is that the
coin landed heads if it was flipped?’, and also how likely Bob will find the answer to be.
Since the contextually salient evidence and the utterer’s evidence are the same, CP delivers
the verdict we predicted.

Matters change somewhat when the questioner knows something the questionee doesn’t.
Let’s suppose that both Alice and Bob know that Alice will be informed if the coin is
flipped and it lands tails and that otherwise she will not be informed. Then there are two
cases to consider. If she is not informed Alice can reason that, although she doesn’t know
whether the coin was flipped, it’s not the case that it was flipped and landed tails. So she
truthfully concludes that if the coin was flipped it landed heads. Bob can see this and
surmises that:

Case 1: The proposition expressed in Alice’s mouth by ‘if the coin was flipped it landed
heads’ is true in cases where she’s not informed.

On the other hand, if she is informed that the coin was flipped and landed tails the sentence
‘if the coin was flipped it landed heads’ is obviously false in her context.

Case 2: The proposition expressed in Alice’s mouth by ‘if the coin was flipped it landed
heads’ is false when she is informed.

These are, at least, the truth values these two utterances would have in the respective scenar-
ios if they had truth values at all.9 Furthermore, according to the contextualist framework
outlined earlier, the proposition expressed by Alice will be the same in both scenarios. Even
though the proposition that constitutes her evidence at t is different in the two contexts, the
salient accessibility relation, which tells us what her evidence at t is in each case, is the
same. So according to a popular contextualist theory, which relativises the proposition
expressed to an accessibility relation (sometimes called a modal base), rather than a salient
proposition, Alice will have said the same thing in both cases. This point is crucial because
it means that Bob can know what Alice has said, even if he does not know what she actually
knows – he knows that in the first type of scenario Alice’s evidence at t will include the
fact that she hasn’t been informed, and that in the second type of scenario the evidence that
the coin was flipped and landed tails.10 Call the proposition expressed in both cases p.

9 There seems to be a straightforward analogy with the Gibbard cases that are sometimes taken to
motivate contextualism. The crucial difference is that these two utterances are made in different
worlds, relative to the same agent’s evidence whereas the Gibbard cases the utterances are made
in the same world relative to different agent’s evidence. Thus unlike Gibbard cases we have no
trouble accounting for the different truth values of these utterances (they are made in different
worlds where the facts are different) and moreover, since it is Alice’s evidence at the time of
utterance, t , that is salient in both scenarios, it is natural to think that the two utterances express
the same proposition.

10 It is a common misconception about contextualism that it involves pervasive ignorance about what
the speaker is saying (see, for example, Gibbard, 1981, p. 232–234; Stalnaker, 1987, p. 110–111)
There is an alternative contextualist view that is susceptible to this charge. The alternative view
uses a contextually salient proposition, rather than a contextually salient accessibility relation, to
determine what is said. On this view what Alice said in the two scenarios was distinct. Moreover,
a natural contextualist account (a variant of HARPER’S CONDITION below) implies that when the
contextually supplied evidence entails A ⊃ B the corresponding indicative expresses a necessary
proposition, and when it entails A ∧ ¬B the indicative expresses an impossible proposition.
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Here it seems as though when Alice outright asserts ‘if the coin was flipped it landed
heads’, she is reporting something about her knowledge, not about what is common knowl-
edge between them: since Bob doesn’t have this information, she communicates something
useful by uttering this conditional.11 Unfortunately, for this very reason, we cannot get
clean intuitions about what Bob’s prior credence is in the proposition Alice asserted,
because what he will report is his credence after he’s heard the utterance and updated
on what’s been said. However we can still ask him to consider, before he’s heard anything,
how probable it is that an utterance of that sentence would be true, were it to be made
by Alice.

Here is how he reasons. Either Alice was informed that the coin was flipped and landed
tails or she wasn’t. If she’s not informed (i.e., Case 1 above) then, p, the proposition she
would have asserted if she’d uttered the conditional, is true. If she was informed that the
coin was flipped and landed tails (i.e., Case 2) p is false. Thus he knows that p is true if
and only if she was not informed, and this happens if and only if the coin was not flipped or
it was flipped and landed tails. Thus the probability of what the conditional says in Alice’s
context is just the probability that either it wasn’t flipped or it was flipped and landed tails
(i.e. the material conditional.) Since there was only a small chance that it was flipped,
Bob’s credence in this disjunction is high, and not identical to one half. Stalnaker’s thesis
predicts that Bob’s credence in p should be a half, CP does not.

The above is an attempt to get a direct probability judgment regarding a proposition
expressed by a conditional relative to a context that has different information to that of the
judger. Such examples are hard to come by, and are certainly harder to evaluate. Let me
now try and show that Stalnaker’s thesis fails by calculating these probabilities indirectly.

Suppose that both Alice and Bob know that a car, with some unknown amount of gas,
is to be driven in a straight line until it runs out of gas.12 While they do not know how
much gas is in the car, they know that it will run anywhere between 0 and 100 miles
and then stop. Both Alice and Bob begin with evenly distributed credences regarding how
far the car travelled – suppose they in fact have exactly the same credences, represented
by the function Pr . Alice then goes out and checks the last 30 miles of the road. The
car is not there and she concludes that the car didn’t travel more than 70 miles – her
credences are now represented by the function Pr(· | E≤70), where E≤70 is the proposition
that the car travelled at most 70 miles. Bob does nothing and his credences remain the
same at Pr .

Thus we get the puzzling consequence that in the first case Alice said something necessarily
true, and in the second case she said something necessarily false.
This alternative view is described, for example, in Van Rooij (1999), although van Rooij finds an
alternative way to make sense of communication in this setting. The idea, by analogy, is that if
you hear Fred utter the sentence ‘I am hungry’, but you do not see who made the utterance, you
do not know what has been said (that Fred is hungry) but you may still update your beliefs on a
proposition determined by the Kaplanian character and conclude that the speaker of the context
is hungry. Thus even when there is ignorance about what has been literally said communication
is still possible.

11 That we use the speaker’s knowledge, and not the mutual knowledge, in these cases is also
crucial for solving the Sly Pete cases in Gibbard’s (1981). Note that there may still be some
cases where two speakers have unequal evidence, yet it is only the mutual knowledge of the
participants that determines what is said. This kind of flexibility regarding what evidence to use
is widely acknowledged (see, for example, the discussion in Chapter 4 of Kratzer (2012).) This
phenomenon is also present with epistemic modals.

12 I take this example from Edgington (2014), although she uses it for different purposes.
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Now Alice and Bob both consider the following conditional in their respective contexts:

If the car went at least 50 miles it went exactly 60 miles.

Since there is more evidence available in Alice’s context than in Bob’s it follows, given
CONTEXTUALISM, that the propositions expressed by Alice and Bob are (at least poten-
tially) different. Call the propositions expressed by Alice and Bob A and B respectively.
If we were to ask Alice and Bob to report their credences in the above conditional it seems
clear that Alice would report her credence in A and Bob would report his credence in B,
and not vice versa. CP predicts the intuitively correct result that these two verbal reports
will match Alice and Bob’s respective conditional credences: when Alice evaluates A the
evaluator’s evidence and the contextually salient evidence are the same, and similarly when
Bob evaluates B.

Let us run through this idea explicitly for Bob’s judgment. Bob doesn’t know how far
the car went: for him there are 50 possibilities where the car went at least 50 miles, and in
only one of them did the car go 60 miles. Intuitively he judges the probability of the above
conditional to be 1

50 . Since ‘B’ was the name introduced for whatever proposition Bob is
judging in his context, Bob’s judgment corresponds to:

1. Pr(B) = 1
50

Not coincidentally 1
50 is also his conditional credence, and this is exactly what CP predicts.

Analogous things can be said about Alice’s credence in A.
Stalnaker’s thesis also predicts this. However Stalnaker’s thesis, as I’ve precisified it,

predicts much more—it also predicts that Alice’s credence in B (not just in A) should
match her conditional credences, and that Bob’s credence in A (not just in B) should match
his conditional credences. This is not predicted by CP since when Alice evaluates B the
contextually salient evidence is Bob’s evidence not Alice’s, and similarly for when Bob
evaluates A. Neither of these extra predictions of Stalnaker’s thesis are substantiated by a
verbal report, and moreover, I shall now argue, the predictions are incorrect. I shall argue
that if Bob’s credence in B is his conditional credence of 1

50 , as suggested by his verbal
reports, then Alice’s credence in B isn’t her conditional credence. (A parallel problem
could be raised for the prediction that both Alice and Bob’s credence in A must be their
conditional credences.)

Since Alice knows the car went at most 70 miles, her conditional credence that the car
went 60 given it went at least 50 is 1

20 . Thus if Alice’s credence in B were her conditional
credence then:

2. Pr(B | E≤70) = 1
20 (Alice’s credence in B is her conditional credence.)

Note that 2 is not motivated by an intuitive judgment in the same way that 1 is, since it
is A, not B, that Alice would evaluate if she were to consider the above conditional.

Here is the problem: 2 must be false if 1 is true, for they are jointly inconsistent.
Unluckily, Stalnaker’s thesis predicts both. Note that by 2 Pr(B | E≤70) = 1

20 . Also since
Bob’s credences were uniform his credence that the car went at most 70 miles is 7

10 , so
Pr(E≤70) = 7

10 . Now by probability theory we have Pr(B) = Pr(B | E≤70)Pr(E≤70)+
Pr(B | ¬E≤70)Pr(¬E≤70). Since the second summand is positive, and the first we have
calculated we know that Pr(B) > 1

20 . 7
10 . Yet 1

20 . 7
10 > 1

50 contradicting 1.
Unfortunately for Stalnaker’s thesis it predicts both 1 and 2 which we have shown to

be jointly inconsistent. Yet it is clear that it is only 1 that corresponds to our intuitive
judgments about probabilities; CP predicts 1 but not 2 and thus fits the bill perfectly.
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1.2. Other approaches. It is worth noting that despite the impossibility results there
has been a number of attempts to resurrect Stalnaker’s thesis in some limited form (see the
two constructions in Van Fraassen, 1976, McGee, 1989, Jeffrey & Edgington, 1991, Jeffrey
& Stalnaker, 1994, Kaufmann, 2009, Bradley, 2011.)

To simplify discussion, we can divide these attempts into two classes: those that place
some restriction on the kinds of sentences for which a variant of Stalnaker’s thesis holds,
and those that don’t. In fact all but one of the listed approaches falls into the former class,
leaving only the first construction given in van Fraassen’s (1976) providing us with an
unrestricted version of Stalnaker’s thesis.

One thing to highlight about the present results, that distinguishes them from the results
in the former class, is that CP applies to all propositions A and B, without any restriction
on what kinds of iterations of conditionals are allowed. A common sticking point for
the former proposals is to account for the probability of nested conditionals, especially
conditionals with conditionals in the antecedent place in a way that is consistent with the
connection to conditional probability.13 While iterated conditionals are not as common-
place in ordinary discourse, it is just as important to account for them. For one thing, it is
not clear that a syntactic restriction can rule out the instances of CP that these theorists
find problematic. Consider (1) and (2):

If it breaks without significant deformation if it is subjected to stress, it
is not a suitable material

(1)

If it is brittle it is not a suitable material (2)

Firstly note that (1), while an iterated conditional, is a perfectly reasonably thing to say –
iterated conditionals are not a mere curiosity but a proper part of English. Secondly, even
if (1) were improper (it is certainly harder to parse) the antecedents of (1) and (2) plausibly
express the same proposition and (2) is certainly not improper; indeed (2) is a simple
conditional. It therefore doesn’t seem plausible that a purely syntactic distinction, such
as the distinction between nested and simple conditionals, could carve out a significant
epistemological distinction; after all (1) and (2) fall on different sides of the distinction yet
plausibly they are semantically, and presumably epistemologically, of the same kind.

A more direct argument can also be given for including iterated conditionals within the
scope of CP. Consider the following scenario:

Suppose you have ten numbered vases, three are shatter-proof and the
remaining seven are fragile enough to break if dropped. You also know
that two of the fragile vases are priceless, however, you don’t know
which of the vases are priceless or fragile. Suppose also that there has
recently been an earthquake and there is a chance that some of the vases
have fallen from their shelves onto the floor.

13 McGee, Jeffrey, and Stalnaker allow compounding in the consequent but not in the antecedent
(e.g. Jeffrey writes ‘Like McGee’s treatment, this one allows compounding in the consequent
(‘If A, then if B then C’) but not in the antecedent’, see also Stalnaker and Jeffrey’s ‘Generalized
Adam’s Thesis’ which restricts attention to conditionals with categorical antecedents.)
Van Fraassen’s second construction (the ‘Stalnaker–Bernoulli model’ in §4) allows for conditional
antecedents and consequents provided these conditionals do not themselves contain conditional
antecedents and consequents; this issue is inherited in Kaufman’s approach. Bradley expresses
optimism regarding the prospects of extending his approach to iterated conditionals, although
whether this is possible remains an open question. Such approaches typically argue that such
conditionals aren’t evaluable anyway, or at least, that they shouldn’t be evaluated by conditional
probabilities.
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How confident should you be that vase number eight is priceless if it was one of the vases
that broke if it was dropped? The intuitive answer is calculated as follows: there are seven
vases that will break if dropped. Furthermore, we know that out of those only two are
priceless, so the proportion of priceless vases out of those that broke if they were dropped
is intuitively 2

7 .
The proposal that comes closest to this one, then, is the first construction found in van

Fraassen’s paper (see §3.) Given a probability measure with certain nice properties, this
construction will produce a model in which Stalnaker’s thesis holds for arbitrary condi-
tionals, including those with conditionals embedded arbitrarily deep in the consequent and
antecedent. Unlike CP, however, this construction does not explicitly provide an account
of the dynamics of conditional belief: if you give it your credence function at time t , the
construction will output a model of the conditional that satisfies Stalnaker’s thesis relative
to this single probability function, but it doesn’t explicitly account for what happens as
you learn new things and your credences change. That said, there is a natural way to
incorporate van Fraassen’s theory into a contextualist theory resembling CP, and that is
to simply rerun the construction on the updated credence to provide a new interpretation of
the conditional. On this construal the connective that is expressed by an indicative sentence
in a context depends on a probability function supplied by the context (presumably the
speakers credences.)

It is worth comparing this idea to the now prominent version of contextualism in lin-
guistics according to which the proposition expressed by a conditional sentence depends
on a contextually supplied ‘modal base’.14 For our purposes this can simply be modeled by
an accessibility relation, which maps each world to a set of accessible worlds representing
(something like) the total evidence available in the utterance situation at that world. In one
regard, the modal base contains far less information than a probability function—given a
world, the modal base merely tells you which possibilities are left open by the evidence
at that world, and says nothing about how probable those possibilities are. There does not
appear to be an independently motivated reason to think that two conditional utterances,
made when the same epistemic possibilities are open, could express different propositions
due to a small difference in how probable these possibilities are. This seems like a fairly
radical form of context sensitivity, whereas the dependence on a modal base is much more
modest and independently evidenced.

While CP integrates neatly with this kind of theory, van Fraassen’s construction doesn’t.
Firstly, the modal base has a far reaching conversational role in those theories that extends
well beyond the contribution they make to conditional assertions, and this role is perfectly
well captured using a modal base and not a probability function. Secondly, the modal base
is sometimes supposed to represent the pooled evidence of the conversational participants;
to apply this to credences would require solving the problem of credence aggregation
(a difficult problem – see Russell et al. (Forthcoming).)

There is another way in which van Fraassen’s construction involves accepting more
context sensitivity than contemporary contextualism does. Consider again the example in
which Alice is informed at t if a coin was flipped and landed tails, but is otherwise not
informed. Her credences at t in the two cases will be different, so according to van Fraassen

14 There are, of course, lots of variants and different terminologies, but the basic point I am making
remains unchanged in these variants.
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she will end up saying distinct things by the conditional ‘if the coin was flipped it landed
heads’ depending on her credences. Thus in van Fraassen’s model Bob will not know what
Alice has said with the conditional since he does not know whether she was informed or
not. This point holds even if we assume, implausibly, that Bob knows exactly what Alice’s
credences would have been in two different scenarios. A better model would treat the
locus of context sensitivity as a function from worlds to probability functions, intuitively
mapping each world to Alice’s credences at that world. On this model Bob would know
what Alice had said even if he didn’t know whether she’d been informed (assuming he
knows exactly what her credences would be like in the two scenarios).

The formalism I have adopted is more like the latter model, except that I am using
something less fine grained that a function from worlds to probability functions. A modal
base is effectively a function mapping each scenario to a proposition—Alice’s evidence
at t in that scenario. In both scenarios the contextually salient modal base will be the
same and Alice will assert the same proposition by uttering a conditional sentence at t in
either scenario – informally the context sensitivity isn’t due to which proposition actually
constitutes her evidence at t , it’s due to her evidence at t whatever it might be. For Bob
to work out what has been asserted by a conditional utterance at time t all he needs is the
function that maps each world to the utterer’s evidence at t at that world. Thus, presumably,
all he needs to know is who is speaking at what time in that context – he does not need to
know what the speaker’s evidence is.

Other issues are more specific to van Fraassen’s construction. The interpretation of a
conditional, on his approach, is generated by assigning conditionals subsets of the unit
interval (or any space that is ‘full’ – see Van Fraassen, 1976, for definitions) that have
the right size as semantic values. Accordingly the semantics is highly nonstandard and
it is consequently not consistent with orthodox possible world accounts of conditionals
(it cannot, for example, be represented by a selection function, as van Fraassen notes.)
One puzzling aspect of the semantics is that conditionals of the form A → Bi can all
be true, for a consistent A and a countable collection of propositions Bi , even when the
Bi are jointly inconsistent. This is reminiscent of an objection to Lewis’s semantics for
counterfactuals, which predicts that, for each ε > 0, if I had been taller than 2 meters, I’d
have been strictly between 2 and 2+ε meters (given that in the actual world I’m less than 2
meters tall, which I am!) Since it is incoherent to suppose that someone’s height is strictly
between 2 and 2 + ε meters for every ε > 0, one might think that it is impossible for me to
be taller than 2 meters, but this is clearly not an impossibility (see Herzberger (1979), and
also Fine (2012) who makes this problem quite vivid.15)

§2. The random worlds semantics for indicatives. Our first order of business is to
be a bit more precise about what counts as a model for CP. Here I will be concerned with
outlining a natural logic of conditionals, and providing a selection function semantics for
it. Those interested in the philosophical interpretation of this semantics can skip to the next
subsection.

15 Another difference between my approach and van Fraassen’s is that his logic, CE, is slightly
weaker than mine. For example, the unary operator defined by the conditional ¬A → A,
expressing a kind of epistemic necessity, cannot be proved to be a normal modal operator in CE.
More importantly, van Fraassen’s construction validates modus ponens in the initial context, but
when the agent updates her evidence modus ponens can end up failing at some worlds when the
construction is rerun.
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We want a class of connectives, →E , that not only supports CP but also has a reasonable
conditional logic. Of particular interest is the connective →E obtained where the relevant
evidence is tautologous – i.e. when E relates every world to every other world. I’ll call this
the ‘ur-conditional’. When E is tautologous I shall omit the subscript altogether and I’ll
simply write A → B.

We shall work within a modal propositional language, L, consisting of the usual truth
functional connectives, ¬ and ⊃, from which the other truth functional connectives are
definable, and a special binary modal connective representing the ur-conditional, →. I shall
adopt the ordinary definitions of ∧, ∨, ⊥ in terms of ⊃ and ¬. I shall also adopt the
following shorthands:

A ≡ B := (A ⊃ B) ∧ (B ⊃ A)
A ↔ B := (A → B) ∧ (B → A)
2A := (¬A → ⊥)

To increase readability, as is typically done in probability theory, I shall frequently shorten
A ∧ B to AB.

My focus will be on the theory which I’ll call L . L can be axiomatised by closing the
following axioms under modus ponens (for the material conditional ⊃), the rule of uniform
substitution and the rules RCN and RCEA.

RCN if  B then  A → B
RCEA if  A ≡ B then  (A → C) ≡ (B → C)

CK (A → (B ⊃ C)) ⊃ ((A → B) ⊃ (A → C))

ID A → A
MP (A → B) ⊃ (A ⊃ B)

CEM (A → B) ∨ (A → ¬B)

C1. (A → B) ⊃ ((B → ⊥) ⊃ (A → ⊥))

The first three principles correspond to a basic conditional logic, entitled CK (usually
context will distinguish the logic from the principle CK.) This logic is common to pretty
much all possible world approaches to conditionals and is in this sense analogous to the
weakest normal modal logic K (indeed CK ensures that the unary modal operator A →
is normal operator in Kripke’s sense.) RCN states that conditionals whose consequents
are logical truths are themselves logical truths. In conjunction with CK this ensures
that what’s true ‘if A’ is closed under classical propositional logic (specifically, CK ensures
it’s closed under modus ponens for the material conditional.) Finally RCEA ensures
that logically equivalent sentences can be substituted in the antecedent position.
From this the intersubstitutivity of logical equivalents in any position is derivable in CK.

The next two principles should be fairly self explanatory. ID just says that if A then A.
MP, on the other hand, says that indicative conditionals entail the corresponding material
conditional. This is tantamount to saying that → obeys modus ponens for the only ways
for A → B to be true while A ⊃ B to be false would be for A → B and A to be true and
B false. Philosophers skeptical of modus ponens, or indeed any of the other principles, can
still take interest in the tenability results. If CP is consistent with the logic L , it is certainly
consistent with the weakenings of L .

Of particular note are the final two axioms, CEM and C1. The axiom CEM, short
for ‘conditional excluded middle’, is distinctive to Stalnaker’s logic of conditionals, and
constitutes the primary difference between it and a similar theory due to Lewis (1973).
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C1 on the other hand governs the behaviour of conditionals that are vacuously true.
When we are concerned with indicatives a conditional is vacuously true when the an-
tecedent is epistemically impossible in the relevant sense. The only cases in which
A → ⊥ is true are cases in which the conditional is vacuously true; in these cases I’ll
say that A ‘crashes’. Since we are focusing on the ur-conditional the only proposition
ruled out by your evidence is the contradictory proposition. Thus when → represents the
ur-conditional several further principles are motivated such as C0

C0 (A → ⊥) ⊃ ((B → C) ≡ (A ∨ B → C))

If A crashes, then A is inconsistent so A ∨ B and B ought to be equivalent and thus ought
to conditionally imply the same propositions. (It is not entirely clear to me whether C0 is
valid when the ur-conditional is replaced by →E for arbitrary evidence E so I leave that
open in what follows.) It is worth noting that the system that results from replacing C1 with
C0 in L has C1 as a derived theorem. C0 is therefore strictly stronger than C1.

Furthermore, if the only proposition that crashes is the inconsistent proposition then
we should expect the defined operator 2 (‘¬A crashes’) to iterate in accordance with the
modal logic S5. In particular we want:16

4 (A → ⊥) ⊃ (B → (A → ⊥))

B A ⊃ (A → ⊥) → ⊥
Neither of these principles are motivated when → is substituted for conditionals expressed
by agents with evidence. If we were to define a 2E operator as ¬A →E ⊥, this would
express some kind of epistemic necessity which may not iterate in the way predicted
by 4 and B.

Natural analogies between L and Stalnaker’s logic C2 can be drawn. The most salient
difference is that this logic does not have the theorem

CSO (φ ↔ ψ) ⊃ ((φ → χ) ⊃ (ψ → χ))

Indeed adding CSO to L collapses the logic into Stalnaker’s, so in this sense we can think
of L as what you get by removing CSO from C2. In my view this is a benefit of the
present account: CSO has been subjected to a number of counterexamples (see Tichỳ,
1978 (and the variant discussed by Stalnaker in Stalnaker (1987)), Mårtensson, 1999,
Tooley, 2002, and Ahmed, 2011) and is also responsible for some of the triviality results
(see Stalnaker, 1976; Hájek & Hall, 1994). However this is not the venue for a full defence
of this feature of the logic so I shall put it to one side for now.

A frame for a conditional logic is a pair 〈W, f 〉 where W is a set of worlds and f :
P(W ) × W → P(W ) – f is called the ‘selection function’. A model is a pair 〈F, �·�〉
where F is a frame and �·� maps propositional letters to subsets of W . �·� extends to a
function from the rest of L to P(W ) as follows:

• �¬φ� = W \ �φ�

• �φ ⊃ ψ� = (W \ �φ�) ∪ �ψ�

• �φ → ψ� = {w | f (�φ�, w) ⊆ �ψ�}

16 The particular formulations of these principles are due to Cian Dorr. Given our definition of 2
they are provably equivalent to the principles 2A → 22A and A → ¬2¬2A respectively.
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A sentence, φ, is true in a model 〈W, f, �·�〉 iff �φ� = W , and is valid on a frame iff it’s
true in every model based on that frame, and valid on a class of frames iff it is valid on
every member of that class.

RCEA, RCN, and CK are valid on the class of all frames. Combinations of the remain-
ing principles are validated on the class of frames that additionally satisfy the correspond-
ing combination of conditions from the below list:

ID f (A, x) ⊆ A
MP x ∈ f (A, x) whenever x ∈ A.

CEM | f (x)| ≤ 1
C1. If f (A, x) ⊆ B and f (B, x) = ∅, f (A, x) = ∅
C0. If f (A, x) = ∅ then f (A ∪ B, x) = f (B, x)

In the presence of CEM the selection function always either picks out a singleton or the
empty set. In this case we can modify the semantics to conform with Stalnaker’s original
Stalnaker (1968) semantics so that f maps us from a world, w, and a set of worlds, A,
to a single possible world (namely x if f (A, w) = {x} in the general semantics) or the
unique impossible world # (if f (A, w) = ∅) in the general semantics) at which every
sentence is stipulated to be true. In certain circumstances it will be useful to translate
between Stalnaker’s semantics and Chellas’s slightly more general semantics which allows
for more than one world to be selected.

If we want to guarantee 4 and B as well, one can stipulate that

f (A, x) = ∅ only if A = ∅.

This of course encodes the principle that A crashes only if it’s the inconsistent proposition.
This condition automatically ensures C0 and (thus) C1.

So much for the ur-conditional. What of the conditionals →E when E represents sub-
stantial evidence? We shall use fE to represent the selection function for this conditional
where E is an accessibility relation corresponding to some evidence. Finally, given a world
x , E(x) will be used to represent the set {y | Exy} (the function x �→ E(x) from worlds to
propositions is sometimes called a ‘modal base’.) A very natural thought would be simply
to define fE in terms of E and the ur-selection function as follows:

fE (A, x) = f (A ∩ E(x), x)

This has the effect of guaranteeing that the truth value of an indicative conditional, ‘if
A then B’, in a context is a function of the epistemically possible A-worlds in that context
(where the epistemically possible worlds are just those consistent with the contextually
salient evidence E .) It is worth noting that defining A →E B this way preserves all of
the axioms of L except, possibly, for MP. If we further stipulate that E is reflexive – as
indeed it probably should be given it represents knowledge or mutual knowledge– then
MP holds.

As we shall see, only the first of the two models makes the above identification. This
concludes our discussion of the constraints on the selection function. The following defi-
nition will be useful in what follows:

DEFINITION 2.1. Given a frame 〈W, f 〉, say that the selection function is regular if it
satisfies the frame conditions for the logic L.

A selection function is normal if it is regular and f (A, x) = ∅ iff A = ∅. Frames based
on normal selection functions validate B, 4, and C0 in addition to the principles of L.
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2.1. Conditional excluded middle. How should one understand the above semantics,
and in particular, what does the selection function intuitively represent? The interpretation
initially given to the selection function by Stalnaker in Stalnaker (1968) was that f (A, x)
picks out (the singleton of) the closest world to x in which A is true, where closeness
is determined by some measure of similarity between worlds. This interpretation initially
attracted a lot of criticism. For one thing, it requires that there be a unique closest A-world
to x when the relevant notion of closeness seems to determine no such thing—any ordinary
ordering of similarity would allow for ties or infinite descending chains of ever closer
worlds. Another issue is that it is not clear what the relevant notion of closeness is when
we are trying to evaluate indicative, as opposed to subjunctive, conditionals. Many have
the intuition that indicative conditionals are in some sense epistemic and conclude that,
since the notion of closeness relevant for evaluating subjunctives is irrelevant here and no
epistemic notion is forthcoming, indicatives should not be analysed in terms of closeness.

Lewis’s response to the first objection—that there might not be a unique closest world—
in the case of subjunctives, is to relax the constraint that the selection function pick out a
unique world. In terms of the constraints listed above this means relaxing the constraint
that | f (A, x)| ≤ 1. Accordingly, f (A, x) must be allowed to pick out a set of closest
worlds without any assumption that there must be at most one of these.17 Unfortunately
this has the knock on effect of invalidating CEM.18 Lewis was primarily concerned with
subjunctive conditionals, and subjunctive instances of CEM are often controversial for
good reason. When we are concerned with simple past tense indicative sentences, however,
CEM appears to be much harder to deny. Contrast:

1. Either the coin would land heads if it were flipped or it would land tails.

2. Either the coin landed heads it if was flipped or it landed tails.

While the former is disputable, the latter surely isn’t (assuming we are not taking seriously
the possibility that the coin could do anything other than land heads or land tails.19)
Of course, Lewis himself does not apply his own brand of ‘closest world’ style semantics
to indicative conditionals – my point is just that there are very good reasons not to relax
the condition that | f (A, x)| ≤ 1 in the case of simple past indicatives.

Much has been said on this, and I do not want to adjudicate between the various re-
sponses Stalnaker and others have put forth in favour of this interpretation. I will say one
thing, however. One question we have been considering concerns whether there is always
a unique closest A-world, and indeed whether it is even appropriate to use the notion of
‘closeness’ in the semantics of indicative conditionals. Another very different question
asks whether CEM is valid for past tense indicatives. There is no reason to think that

17 To properly represent Lewis’s semantics we’d have to go beyond the simple selection function
semantics described in this section, since Lewis’s semantics allows for failures of the limit
assumption.

18 If f (�A�, x) = {y, z}, y �= z and �B� = {y} then x belongs to neither �A → B� nor �A → ¬B�.
19 Some indicatives don’t behave like this: indicatives with ‘will’ in the consequent are known

to behave a lot more like subjunctive conditionals. I don’t want to include habitual indicatives
either – sentences phrased in the simple present such as: ‘if the window is left open, Granny
jumps out’. Even the instance ordinary excluded middle ‘Granny jumps out of the window or
Granny doesn’t jump out of the window’ sounds nontrivial, and this is probably because we
read it as saying that either Granny usually jumps out or she usually doesn’t. Thus sentences in
the simple present can’t straightforwardly be taken to represent counterexamples to excluded or
conditional excluded middle.
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an answer one way or the other to the first question should determine our answer to the
second, especially if indicative conditionals are not to be analysed in terms of closeness.
There is consequently no reason why indicatives cannot be modeled using a selection
function semantics that validates CEM, provided the selection function is not analysed in
terms of closeness. (Indeed, you might take the fact that a similarity based semantics ties
an intuitively correct principle to an implausible principle about similarity is a powerful
argument against this kind of semantics.)

How to interpret the selection function then? Assume, with Stalnaker, that | f (A, x)| ≤ 1.
Then a more neutral way of putting things would be as follows:

There are a bunch of indices which describe the different possible way things are
for all you know, one of which describes the way things actually are: x . f (A, x)
then simply represents the way things are if A.20

Of course, for Stalnaker, the world that would have obtained if A had obtained just is the
closest world at which A obtains (and similarly for indicatives.) But this identification is
not forced on us, and one can still say everything we want to say about the semantics of
conditionals by interpreting the selection function in the more neutral way.

A potentially illuminating way to think of the selection function is as picking out an
antecedent world at random from the epistemically accessible worlds.21 In Stalnaker’s
theory a world is selected from the accessible antecedent worlds with an overriding prefer-
ence for more similar worlds. On my understanding, however, the selection process has no
preference for more similar worlds: we can think of it as having a preference for worlds that
are more probable on the evidence, but this preference is not overriding but proportional to
the probability.

The idea of randomly selecting a world is clearly a metaphor and not intended to provide
a reductive analysis of conditionality. There are clearly many ways to select something
randomly. You could picturesquely imagine God rolling a die to determine which world to
select. This is not what I mean, the process of random selection is irreducibly conditional
in nature. One way to randomly select a member of the set {Heads, Tails} would be to take
a coin out of your pocket and flip it or spin it. Another way would be to leave the coin in
your pocket and instead talk about the side that landed face up if it was flipped at t ; this
will in some sense pick out one side at random. Here the process of random selection is
partially determined by the antecedent (it’s going to be a flipping rather than a spinning
of the coin, for example) but the conditional morphology was essential to describing the
process.

2.2. The triviality results. There are, of course, numerous triviality results affecting
variants of Stalnaker’s thesis. These typically come in two flavours: dynamic and static.
Dynamic triviality results leave it open whether there could be a rational agent whose
credences in conditionals always match their conditional credences. What they show is
that if your credences are matched in this way, this will be disrupted upon changing your
credences to accommodate new evidence. Static results, on the other hand, show that no
rational agent could be in that kind of state in the first place.

Note that CP is designed to integrate straightforwardly with a standard Bayesian theory
according to which one always updates one’s beliefs by conditionalisation. The dynamic

20 For subjunctive conditionals we can say that f (A, x) represents the way things would have gone
(at x) had A obtained.

21 Moritz Schulz (Forthcoming) defends something like this interpretation of counterfactuals.
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triviality results, however, fail to get a hold in our setting. CP predicts that if my total
evidence is E my credence in A →E B must be my conditional credence – however, the
thesis is simply silent about my credences in A →E B once my evidence has changed from
E to something stronger such as E+. (Although, of course, there will be another instance
of CP for the conditional A →E+ B.)

More troubling are the static triviality results, for these purport to show that one cannot
ever satisfy the conditional probability equation. One class of static triviality results rely on
principles distinctive to Stalnaker’s logic. For example, in Hájek & Hall (1994), it is shown
that the principle CSO mentioned above causes trouble with Stalnaker’s thesis if we take
it to govern conditionals that contain conditionals embedded in certain ways within the
antecedent.

The validity of CSO corresponds to the following constraint on selection functions:

CSO If f (A, x) ⊆ B and f (B, x) ⊆ A then f (A, x) = f (B, x)

This validates the principle CSO which would have the effect of collapsing the logic L into
Stalnaker’s logic C2. CSO is guaranteed on a similarity based semantics: if the closest
A-world is a B-world and the closest B-world is an A-world then the closest A-world is
the closest B-world. On the random world interpretation of the selection function, however,
no such constraint exists and CSO is invalid. The randomly selected A world might be
a B world and vice versa, but there is no guarantee that the very same world will be
selected except in the special case where there is only one accessible world at which both
A and B are true. Thus these static triviality results hold no sway for the present account
of conditionals.

Related principles of conditional logic also give rise to static triviality results. Indeed all
of the principles below can be shown to cause problems analogous to the one that CSO
poses (RCA, for example, is shown to be problematic in Edgington (1995)):

CA ((φ → χ) ∧ (ψ → χ)) ⊃ (φ ∨ ψ → χ)
RCA (φ ∨ ψ → χ) ⊃ (φ → χ) ∨ (ψ → χ)

CM (φ → ψ) ⊃ ((φ → χ) ⊃ (φ ∧ ψ → χ))
RT (φ → ψ) ⊃ ((φ ∧ ψ → χ) ⊃ (φ → χ))

These principles are all closely related to CSO and are validated in the similarity seman-
tics. Indeed, given my preferred logic L , each of the above principles is provably equivalent
to CSO except for RCA which is equivalent if you assume C0.22 Unsurprisingly they are
all invalid in the random world semantics.

Despite the fact that these principles are strictly speaking invalid, it is worth pointing
out that they enjoy a kind of pragmatic validity. For if an agent’s evidence is contextually
salient when the conditionals are uttered the agent will find the conclusions probable if the
premises are sufficiently probable – a fact that is a straightforward consequence of CP.23

Before we move on it is also worth noting that there are existing results that get the
above logical principles and a restricted version of Stalnaker’s thesis at the same time by
restricting the thesis to simple conditionals in which certain iterations of conditionals in
the antecedent are banned (see Van Fraassen (1976).) If one finds restrictions like this

22 The proofs of these equivalences are in Bacon (Unpublished Manuscript).
23 That these principles are probabilistically valid was proved in Adams’ (1975). An inference is

valid in this sense if, roughly, however, probable you want to make the conclusion you can find
a threshold such that if the agent finds the premises to be at least that probable she will find the
conclusion at least as probable as the amount you wanted.
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at all attractive (I do not) it is also worth noting that the results in appendix §4 show a
symmetrical result: that one can have Stalnaker’s thesis in full generality—i.e., with no
such restrictions – with a restricted form of the above inferences instead. That is to say,
one can have CSO and its relatives provided we restrict the sentences occurring in
antecedent position of the above inferences, φ and ψ , to sentences that do not themselves
contain conditionals.

There is another class of static triviality results that I must address. These results do not
rest on principles of conditional logic, but rather show that the thesis is not satisfiable in
models in which there are only finitely many worlds (Hájek, 1989) or even in models in
which there are countably many worlds (Hall, 1994). In short, to satisfy CP one needs
uncountably many worlds.

Let us begin with Hájek’s result. This can be demonstrated with a fairly simple example:
imagine that we just want to model the roll of a dice whose outcome we are ignorant about.
Intuitively you might think that we could model this with exactly six equiprobable worlds
representing each possible outcome. The problem with this is that if you want a thesis
like CP then you need to find, for each conditional probability, a proposition with that
probability. However, in a finite model there simply won’t be enough propositions to go
around. In the model described above, for example, every proposition has a probability
of the form n

6 , where n is simply the number of worlds in that proposition. However,
the probability that the dice lands on a 6 given it doesn’t land on a 1 is 1

5 which clearly is
not of the form n

6 so there is no proposition with that probability.
Note, however, that the assumption that there are only 6 epistemic possibilities in the

scenario described above becomes utterly implausible once we take conditional proposi-
tions seriously. Let us consider the world in which, unbeknownst to me, the die landed
on a 1. I claim that in this scenario I am not only ignorant about the outcome of the die
roll, but also ignorant about some conditional facts, such as whether the dice landed on a
6 or whether it landed on a 5 if it landed on one of 5 or 6. Given CEM we know that even
at the world where the die in fact landed on a 1, the die either landed on a 5 if it landed
on a 5 or a 6 or it landed on a 6. Thus strictly speaking the 1 world should be split into
two epistemic possibilities corresponding to the possibility that D1 ∧ ((D5 ∨ D6) → D5)
and the possibility that D1 ∧ ((D5 ∨ D6) → D6) where Dn is the proposition that the die
landed on n.

By considering other conditionals with antecedents that are false at the world where
the die lands 1 you can argue that this world should be divided into further epistemic
possibilities. Moreover, once you have recognised the existence of these further epistemic
possibilities, there are new propositions you can plug in as antecedents corresponding to
arbitrary sets of these epistemic possibilities. Some of these sets of epistemic possibilities
do not correspond to categorical (i.e., nonconditional) propositions, so intuitively this is
like considering the epistemic possibilities generated from conditionals with conditional
antecedents. You can make the argument rigorous if you wish, but it should, I hope, be clear
that the presence of conditional propositions ensures that in the case described the number
of epistemic possibilities is infinite.

Why must the number of epistemic possibilities be uncountable? This follows from a
fairly natural extension of the previous remarks. For if there are infinitely many epistemic
possibilities, then are uncountably many sets of these possibilities–that is to say, there
are uncountably many propositions. Thus there are uncountably many antecedents to play
around with—for each of uncountably many propositions, A, we are ignorant about what
is true if A. Thus there are uncountably many things we are ignorant about.
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Of course, there is another way of understanding what a ‘world’ is: a maximally strong
categorical proposition – something which tells us the answers to ordinary questions like
how dice land, but are silent about the hypothetical facts about what happened if this or
that. It would be extremely puzzling if there was some argument that demonstrated that
CP could not be satisfied in a model with finitely or countably many worlds in this sense
of ‘world’. Fortunately there can be no such argument – the construction in appendix §4,
for example, allows you to start off with a set of worlds of any size (representing maximally
strong categorical facts) and will then construct a model of CP in which these worlds
are split into further epistemic possibilities corresponding to all the unknown conditional
facts.

2.3. The tenability results. So far we have just been concerned with the interpretation
of the conditional. In order to model CP we also need to talk about probabilities and
evidence. In particular we need to enrich the frames with a class of probability functions
representing the ur-priors, and a set of propositions which represent the propositions that
could, in some possible world, be some agent’s total evidence.

The following definition provides us with a precise framework against which we can
evaluate the truth of CP:

DEFINITION 2.2. A probability frame is a tuple 〈W,B, f·, �, P, w〉 where

• W is a set of worlds, where w ∈ W represents the actual world.
• B is a complete Boolean algebra of subsets of W , containing W , representing the

evidence propositions.
• f· maps accessibility relations to selection functions. Given E with E(w) ∈ B,

fE is a regular selection function on E.
• � is a σ -algebra (a set of subsets of W containing ∅ and closed under complements

in W and countable unions.)
• P is a nonempty set of countably additive probability measures over � representing

the set of rational ur-priors.

Informally, a probability frame provides us with a set of probability measures, over a
measure space 〈W, �〉, and also a collection of selection functions, fE , relative to the same
set of worlds, W , indexed by accessibility relations E . The final ingredient is a Boolean
algebra of propositions, B, that represent the propositions that could be one’s total evidence
(we can then impose the restriction E(w) is a member of B for each world w.) I leave it
open that any proposition could be a persons total evidence; however, there are other natural
constraints on evidence one might consider (see appendix A.)

We are looking for a probability frame that satisfies CP; such frames will be called
adequate:

DEFINITION 2.3. A probability frame 〈W,B, f·, �, P〉 is adequate if and only if

Pr(B | A ∩ E(w)) = Pr({x | fE (A, x) ⊆ B} | E(w)) for every Pr ∈ P,
A, B ∈ � and E with E(w) ∈ B ∩ �

It will often be useful to write A ⇒E B instead of {x | fE (A, x) ⊆ B}. We also adopt
the convention of dropping the subscript when E is the vacuous evidence.

However, in all of the results I prove, I restrict attention to accessibility relations, E ,
that are introspective at the actual world. This just means that if Ewx , E(w) = E(x).
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This condition would be ensured, for example, if E was an equivalence relation. However,
this seems like too strong a condition: if your knowledge, for example, can be represented
by an equivalence relation then you are not only perfectly introspective, but necessarily
perfectly introspective.

Our goal, then, is to construct an adequate frame. However, there are other conditions
we might also want to explore. For example

NORMALITY: A frame is normal iff the ur-selection function f is a normal selec-
tion function.

This of course shows that a stronger logic than L is compatible with CP. Both the models
we will consider shortly are normal. Another constraint we might want to implement is:

FULLNESS: A frame is full iff B = P(W ).

A principled reason to weaken the fullness condition would be if you thought that only cat-
egorical propositions (i.e., nonconditional propositions) could be an agents total evidence.
In a full frame every proposition, categorical, or hypothetical, could in principle be an
agent’s total evidence. We shall return to the question of whether a conditional proposition
could be an agent’s total evidence in the next section. For now let me just highlight it
as a possible further constraint in addition to adequacy. Finally we might also want the
constraint:

HARPER’S CONDITION: fE (A, x) = f (A ∩ E(x), x) where f is the ur-selection
function.

The condition above is stated in Van Rooij (1999), who attributes the idea to Harper in
Harper (1976).24 The basic thought behind Harper’s condition is this: whether an utterance
of a conditional is true (at a world x) should be a function of the epistemically possible A
worlds at that context (the set of epistemically accessible A-worlds is just AE .) Harper’s
condition is quite strong, and Stalnaker has suggested the following weaker condition
(I have reformulated it from Stalnaker (2009) to match our current conventions.)

STALNAKER’S CONDITION: fE (A, x) ⊆ E(x).25

Stalnaker’s condition does not require that the truth of a conditional ‘if A then B’ must
depend only on the epistemically possible A-worlds – it is compatible that there be two
distinct contexts providing evidence E and E ′ such that the E-accessible A worlds and the
E ′ accessible A worlds coincide, but where A →E B is true and A →E ′ B is false.

We are now in a position to state the relevant theorems.

THEOREM 2.4. There is an adequate frame that satisfies NORMALITY and HARPER’S

CONDITION (and therefore also STALNAKER’S CONDITION).

24 Actually van Rooij states his theory in terms of a contextually salient proposition rather than an
accessibility relation. He states that fE (A, x) = f∅(AE, x) when AE �= ∅. When AE = ∅,
however, van Rooij stipulates that fE (A, x) = f∅(A, x). On this interpretation A →E ⊥ can be
false even if A is inconsistent with E : this has the effect of making →E satisfy MP even at the
worlds inconsistent with E .

25 Stalnaker also qualifies this with the condition that A and E(x) are consistent. In the models
considered here the stronger thing stated above also holds so I have left out the qualification.
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THEOREM 2.5. There is an adequate frame that satisfies NORMALITY, FULLNESS and
STALNAKER’S CONDITION.

See the appendices for the proofs.26

§3. Conclusion. In summary, then, we have proposed a thesis, CP, connecting the
probabilities of conditionals to conditional probabilities that predicts the instances of Stal-
naker’s thesis that seems intuitively right without predicting the instances that are intu-
itively incorrect; this thesis extends to account for intuitions about iterated conditionals.
Moreover, the proposal is specifically designed to address the dynamics of belief in a way
that is consistent with a standard Bayesian theory of updating via conditionalisation.

It is also worth noting that while the resulting theory admits a possible worlds semantics
based on selection functions, the theory is not compatible with one prominent interpretation
of the selection function based on the idea that the selected world be an antecedent world
which is, in some sense, minimally different from the actual world. On the similarity
interpretation the resulting logic would be slightly stronger than my own, for it would
include the principle CSO. Let me end the paper by making a few remarks about this.

The reading of the selection function I proposed was that fE (A, x) selects an epis-
temically accessible A-world at random in a way that may or may not select the closest
accessible A world to x . The process by which the world is ‘selected at random’, however,
cannot be given an explication in nonconditional terms: it cannot be understood more
informatively that just the (E-accessible) world that describes how things are if A, which
is random only in the sense that we don’t know which world this is (when what we know
is given by E .27)

One might object to this proposal on the grounds that, unlike the similarity account,
we do not get a reductive, or even an informative account of conditionals out of the
analysis. Of course this is no objection to someone who never set out to give a reduc-
tive analysis, but more importantly, it is not clear that the similarity analysis enjoys this
apparent advantage either. Stalnaker (Stalnaker, 1987, pp. 126–132) explicitly states that
the pretheoretic notion of similarity plays no role in fixing the truth conditions of condi-
tional statements. Much of the motivation for the abstract analysis in terms of orderings
with certain constraints is to provide rationale for formal properties on the selection func-
tion that validate desirable modes of inference such as CSO. The ordering relevant for
evaluating conditionals is therefore not an antecedently understood notion of similarity,
but one specifically guided by a pre-existing understanding of conditionality.28

Insofar as the similarity analysis is motivated by the desirability of principles such as
CSO, Stalnaker’s attitude toward this principle is surprisingly noncommittal. He writes, for

26 One might wonder if it’s possible for an adequate frame to be both full and satisfy
Harper’s condition together. The answer to this is no: see Korzukhin’s ‘Triviality Results’
https://courses.cit.cornell.edu/tk283/Triviality.pdf (unpublished).

27 Schulz (Forthcoming) argues for something like this way of understanding the selection function
in the case of counterfactuals, although I read him as taking the notion of ‘random selection’ to
give us a more informative grip on conditionals than I do.

28 Another worry you might have is that to many people it seems clear that some notion of similarity
is important for evaluating subjunctive conditionals, and that our analysis of indicatives belies
the parallels between the two cases. My view is that if similarity does make its way into the
analysis of subjunctive conditionals, it is through the distinctive behaviour of modals like ‘will’
and ‘would’ that appear in these constructions. A natural view would be that the counterfactual
selection function selects an A world at random from among the most similar A worlds. This also
has the side effect of validating CEM without imposing implausible constraints on similarity.
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example, that ‘the arguments for condition (3) [i.e. CSO] are far from decisive’ (ch7 ft5)
and, after considering an apparent counterexample to it, suggests that ‘the question is one
of how to distribute the burden of explanation between pragmatics and semantics’ and that
‘to some extent the issue may be one of simplicity and efficiency of formulation rather
than substance’. Stalnaker also points toward many good inferences involving CSO and
related principles. (I find these examples less than convincing, however, since alternative
accounts of the goodness of these inferences are available. CP already predicts that anyone
who is certain in A ↔ B and in A → C in at a given context must be certain in B → C .
Moreover, while the axiom CSO, a compound of conditionals, might not always be fully
probable in a context, there is a threshold below which its probability cannot fall, according
to CP, so that one can never be in a context where one can outright assert its negation.)

An example we discussed earlier brings out the difference between Stalnaker’s gloss
and mine quite nicely (this point is due to Edgington (2014).) In the example where Bob
knows that a car has travelled between 0 and 100 miles but does not know how far, it seems
natural to say that he also doesn’t know whether the car travelled, say, 63 miles if it
passed the 50 mile mark, or 89. Indeed it’s natural to think that he takes it to be just as
probable that it went 63 miles if it passed the 50 mile mark as that it went any other
number of miles between 50 and 100. This fits my interpretation fairly naturally, where the
world that describes how far the car went is picked randomly from the worlds where it
travelled between 50 and 100 miles, with no preference for one world over any other (and
in particular, no preference for more similar worlds.) A similarity analysis would rather
suggest that at any world at which the car actually went less than 50 miles, the conditional
‘the car went exactly 50 miles if it went at least 50 miles’ would be true. Since it went less
than 50 miles in half the accessible worlds, this makes it much more probable that it went
50 exactly miles if it went at least 50 miles, than that it went any other number of miles.

Although neither account can give an analysis of the selection function reductively in
terms of similarity or random selection, the present proposal has an advantage over the
similarity analysis. For I can say something substantial about the conceptual role of the
ur-selection function that a similarity theorist cannot. While, of course, we can both say
something about the logical role of conditionals, this will not rule out a material analysis
since that satisfies all of the logical principles we have mentioned in this paper. However,
the ur-selection function has a distinctive role in thought which neither the material analysis
nor the similarity analysis can accommodate.29 Supposing that my present epistemic state
at world x is represented by a prior Pr and an epistemic accessibility relation E . Then
the ur-selection function is subject to satisfying the following rational constraint: Pr({y |
fE (A, y) ∈ B} | E(x)) = Pr(B | A ∩ E(x)), where fE is defined from the ur-
selection function (this could be filled out using Harper’s condition, or some other way.)
Writing Cr(·) for Pr(· | E(x)) (my present rational credences, relative to evidence E) and
f −1
E (A, B) for {y | fE (A, y) ∈ B} (my ‘personal’ conditional, which plays a special role

in my thinking) this just simplifies to:

Cr( f −1
E (A, B)) = Cr(B | A).

Of course, this is just a restatement of CP. Note, however, that one can perfectly well ask
whether there is a selection function that plays this distinctive role in thought without
taking any stance about how it relates to the semantics of indicative sentences in any

29 In the case of the similarity analysis, it is exactly the validity of the principle CSO that prevents
it from satisfying this role.
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language.30 The idea is that we first get a grip on the selection function this way, and then
we ask whether this is clearer than Stalnaker’s abstract orderings, and whether it is more
suited to play a role in a theory of conditional language.

If this is right then it opens up the possibility of providing a theory of indicatives that
is based on probabilistic considerations rather than similarity. These are no more than
programmatic remarks, of course, yet I hope that the above results will open up an avenue
of research (outlined in Stalnaker (1970)) that has been long abandoned.

§4. Appendix A: Tenability result with Harper’s condition. In this section we will
construct a model for CP. Several things that are worth noting about this model

1. All of the selection functions are determined by the ur-selection function in accor-
dance with Harper’s condition: fE (A, x) = f (A ∩ E(x), x).

2. The ur-selection functions is normal so that f (A, x) = ∅ only if A = ∅, thus it
satisfies B, 4 and C0.

3. The model is not full: the set of evidence propositions, B is a strict subset of the
set of all proposition P(W ). Here B intuitively represents the categorical (noncon-
ditional) propositions.

4. P is a fairly rich set of probability functions. In fact, for every probability function
Pr over the nonconditional propositions, B, there is a unique probability function
in P whose restriction to B is Pr .

The third point is particularly worthy of note. According to the informal gloss, B repre-
sents the set of propositions that could, in some possible world, be an agent’s total evidence.
Since some propositions do not belong to B according to this model it follows that there
are some propositions that could not be an agent’s total evidence. Fortunately there is an
intuitive interpretation of this feature of the model.

In the model we start off with an initial set of objects, which we can think of as possible
worlds, and the propositions in B can be identified with arbitrary sets of these worlds.
We can think of a possible world as determining all the ordinary facts concerning where
objects are located, and so on and so forth, but not the conditional facts. For example
a possible world might determine that a particular coin, C , isn’t flipped on a particular
occasion, but it won’t determine whether the coin will land heads or tails if it is flipped
at that occasion. Thus there will be two epistemic possibilities, corresponding to the same
worldly facts (i.e. the same possible world), and according to one the coin lands heads if it
is flipped, and according to the other it lands tails if flipped. In general, then, B represents
nonhypothetical/non-conditional propositions and can be represented by sets of possible
worlds whilst the full set of propositions, including hypothetical propositions, and can be
represented by sets of epistemically possible worlds.

Why then, couldn’t an arbitrary hypothetical proposition, say the proposition that the
coin C will land heads if it’s flipped, be an agent’s total evidence? A common observation
for views accepting CEM is that conditionals like these give rise to a curious epistemic
phenomenon: in this case it doesn’t seem to be possible to find out whether the coin will
land heads if flipped when the coin is never flipped. For example, if you accept conditional
excluded middle then either C will land heads if it is flipped, or it will land tails, but in
worlds where the coin is not flipped it is impossible to obtain further evidence to settle

30 One does not, for example, need to be a contextualist to raise this question.
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the question of which way it would land if flipped. Philosophers subscribing to the law
of conditional excluded middle have conjectured that hypothetical propositions like this
are a special source of indeterminacy (e.g., Stalnaker, 1981) Whether or not this is so
we can certainly agree that we must be ignorant in the scenario described, much as we
would be in the face of vagueness or indeterminacy. The basic intuition is that one can
have any credence you like regarding the completely determinate nonhypothetical facts,
but once you have fixed your credences in those propositions your credences over the rest
of the space of propositions is fixed. For example, if you know that C is fair and will
not be flipped, then you are forced to have a credence of a half in the proposition that
C will land heads if flipped. The situation here is similar to the analogous situation with
vague propositions. Once you know someone has a certain borderline number of hairs, N ,
you are forced to be uncertain, to some degree, in the proposition that that person is bald.

Of course, we learn conditionals all the time; it is important to keep in mind that this fact
is completely consistent with the thesis that our total evidence is never conditional. Accord-
ing to the logic L , when one learns that A and B then one learns the conditional stating
that if A then B, and when you learn that A and ¬B you can rule out the conditional if A
then B. But in these cases your total evidence (AB and A ∧ ¬B respectively) is strictly
stronger than the conditional facts you’ve learnt. In other cases we know conditionals even
when we are ignorant about the antecedent and consequent. Even when you do not know
whether the fuse will blow or the light will go off, it is quite reasonable to assert that if the
fuse blows the light will go off. But in these cases it is natural to think that your assertion
is only appropriate when you know a stronger strict conditional (say, that in all nomically
possible worlds in which the fuse blows the light goes off.) When you do not know the
strict conditional, such as in the case of the coin flip, it is not appropriate to assert the
indicative conditional, even if it is in fact true.

4.1. The construction. The following construction uses the ideas developed by van
Fraassen’s in his ‘Bernoulli–Stalnaker’ models from Van Fraassen (1976). However, van
Fraassen’s models do not satisfy the principle CP for two reasons. Firstly, there is only one
conditional connective that satisfies a variant of the conditional to conditional probability
link, whereas CP states something much more general (that some form of the link holds
for each conditional connective you can express in some context or other.) Secondly in van
Fraassen’s model the probability conditional to conditional probability link holds only for
special conditionals and does not extend to iterated conditionals of various sorts. The fol-
lowing construction is, in a loose sense, the result of iterating van Fraassen’s construction
ω1 many times.

The construction begins with an initial set of possible worlds, W , which intuitively can
be thought of as representing maximally specific things that can be said about the world
without mentioning conditional facts (i.e., facts about what will happen if this or that
happens.) The set W∞ then extends this set, dividing members of W into epistemic pos-
sibilities according to the kind of hypothetical distinctions you can make. Epistemic pos-
sibilities can be thought of as ordered pairs of ordinary worlds and sequences of worlds,
with the latter encoding all the conditional facts that hold at that epistemic possibility.
An ordered pair of a world and a sequence is isomorphic another sequence with an extra
initial element—thus epistemic possibilities will just be represented as sequences of possi-
ble worlds.

Let us put this into practice. Assume that the initial set of states, W , that do not involve
conditional facts is given and is countable. The set of worlds in our model will be the set
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W∞ = W ω1 = {π | π : ω1 → W }. We shall set B = {A×W∞ | A ⊆ W }. B is isomorphic
to P(W ) and is thus a complete Boolean algebra. It is easy to see that B embeds into the
larger algebra of all propositions, which we shall denote B∞ = P(W∞).

Given our initial space W , define the following sequence of sets for α < ω1

• Wα = W ωα

That is, Wα represents the set of all ωα sequences of members of W . Since ωα < ω1
whenever α < ω1 it follows that an element of Wα will be isomorphic to an initial segment
of a member of W∞. Note also the following consequences of this definition:

• W0 = W
• Wα+1 ∼= W ω

α = Wα × Wα × Wα × . . .

In what follows we shall adopt a practice of identifying products which are isomorphic
to subsets of W∞, allowing us, for example, to identify A × W∞ with a subset of W∞
whenever A is contained in some Wα .

The sets Wα for α < ω1 help us describe the measurable sets.

DEFINITION 4.1. Suppose X is a set of subsets of W∞. Then cl(X) is the closure of
X under the operations of countable unions and intersections, and complements relative
to W∞.

The measurable sets, which we shall denote �∞, can be thought of as being approxi-
mated by an infinite sequence of σ -algebras, �α ⊂ B∞ for α < ω1.

• �0 = {A × W∞ | A ⊆ W }
• �α+1 = cl{A0 × · · · × An × W∞ | Ai × W∞ ∈ �α for 0 ≤ i ≤ n}
• �γ = cl(

⋃
α<γ �α)

Note that �α+1 is generated by sets of the form A0 × · · · × An × W∞ where Ai ⊆ Wα .
Each of these generating sets consists of an ω1 sequence such that an initial finite number
of elements belong to Wα and the rest belong to W . This is, of course, just equivalent to
an ω1 sequence of elements of W whenever α < ω1: it is just equivalent to n successive
ωα-sequences of elements of W followed by an ω1-sequence of elements of W , which
is itself an ω1-sequence of elements of W . Bearing this equivalence in mind we can see
from the construction that an arbitrary member of �α will be of the form A × W∞ where
A ⊆ Wα . It is straightforward to show

PROPOSITION 4.2. �α ⊆ �β if α ≤ β

Now we turn to our definition of �∞, the set of measurable sets.

DEFINITION 4.3. A set A ∈ B∞ is measurable iff A ∈ �α for some α. We denote the set of
measurable sets �∞ := ⋃

α<ω1
�α .

It should now become apparent why we chose the ordinal ω1 in our definitions: it is due
to this choice that our measurable sets are closed under countable unions so that �∞ is a
σ -algebra.

DEFINITION 4.4. If A is measurable then the rank of A is the smallest α such that A ∈ �α .
We shall write this: rank(A) = α. If A is not measurable then rank(A) = ∞.

It is now time to define the ur-selection function for a A ∈ B∞ of rank α (possibly
identical to ∞). If A is nonempty let τA be any member of A (it doesn’t matter which.)
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f (A, π) =
⎧⎨
⎩

π [ωα.i] where i is the smallest number such that π [ωα.i] ∈ A
τA if there is no such number and A �= ∅
# A = ∅

Here π [α] : ω1 → W is given by the function π [α](β) = π(α + β) (i.e. π [α] is just the
ω1 sequence you get by lopping off the first α members of π .) Note that this is formally
reminiscent of Stalnaker’s semantics: f (A, π) represents the closest world to π which
belongs to A, where closeness depends on how small the ‘i’ is—the crucial difference is
that the notion of closeness at play here depends on the rank of the antecedent, A. It is
easy to verify that f is normal. In particular, the second condition – that f (A, π) = τ
if A is nonempty and there is no A-world in the sequence of π [ωα.i]’s—is to ensure
that f (A, π) does not output the impossible world unless A = ∅ (if we were to replace
τA with # in the definition we get a merely regular selection function.) In order to ob-
tain fE we simply identify fE (A, x) with f (A ∩ E(x), x) in accordance with Harper’s
condition.

PROPOSITION 4.5. ∅ is measurable and if A, B and A0, A1, A2, . . . are measurable
then so is W∞ \ A, A ⇒ B and

⋃
n An.

We now define the set, P , of ur-priors. For simplicity we have assumed that W is
countable so that every subset of W can be treated as a measurable set (although it would
be simple enough to drop this assumption and work with an initial σ -algebra over W
instead.) We shall show that every regular countably additive probability function Pr on
the powerset algebra on W extends to the measurable sets over B∞. We then identify P
with the set of all such probability functions generated this way.

Suppose that Pr is a regular countably additive probability function on B. For α ≤ ω1
we define Prα over �α as follows.

• Pr0 = Pr
• Prα+1(A0 ×· · ·× An ×W∞) = Prα(A0 ×W∞) . . . Pr(An ×W∞); Prα+1 extends

to the rest of �α+1 via Carathéodory’s extension theorem.
• Prγ (A) = Prα(A) when A ∈ �α for α < γ . This extends to the rest of �γ by

Carathéodory’s extension theorem.

Write Pr∞ for Prω1 . Observe, from the construction of Pr∞, that for any α < ω1
and A0, . . . , Ak ⊂ Wα Pr∞(A0 × · · · × Ak × W∞) = Pr∞(A0 × W∞)Pr∞(A1 ×
W∞) · · · Pr∞(Ak × W∞)

We are now in a position to prove our main theorem.

THEOREM 4.6. The frame 〈W∞,B, f·, �∞, P〉 is adequate.
In particular, if Pr is a countably additive regular probability function over W then

Pr∞ ∈ P and Pr∞(A ⇒E B | E(τ )) = Pr∞(B | A ∩ E(τ )) whenever Pr(A) > 0,
E(π) ∈ B for all π and A, B and E(π) are measurable.

Proof. We begin by showing the result for the ur-selection function. Suppose that
rank(A) = α so that A = A′ × W∞ for some A′ ⊆ Wα .

Assume that Pr∞(A) > 0. Thus A �= ∅ so according to our definition π ∈ A ⇒ B if
and only if the smallest A world in the sequence (π [ωα.i])i is a B world or there are no
A-worlds in this sequence and τA is a B world. In other words, if and only if π [ωα.0] =
π ∈ A ∩ B or π �∈ A but π [ωα.1] ∈ A ∩ B or π [ωα.0] �∈ A, π [ωα.1] �∈ A and π [ωα.2] ∈
A ∩ B or . . . or π [ωα.i] �∈ A for any i and τA ∈ B.
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Let R be the set of π with f (A, π) = τA. Thus A ⇒ B = (A ∩ B) ∪ (A′ × (A ∩ B)) ∪
(A′ × A′ × (A ∩ B)) ∪ · · · ∪ R = ⋃

n( Ā′n × (A ∩ B)) ∪ R. Here I am using X to denote
the complement of X .

Note that R ⊆ (A′)ω × W∞ which has probability 0 whenever Pr∞(A) > 0. Since we
are calculating a union of disjoint sets we have

Pr∞(A ⇒ B) =
∑
n<ω

(Pr∞(A)n · Pr∞(A ∩ B)) = Pr∞(A ∩ B)

1 − Pr∞(A)
= Pr∞(A ∩ B)

Pr∞(A)

= Pr∞(B | A) �

The above demonstrates the result for the ur-conditional: Pr∞(A ⇒ B) = Pr∞(B | A).
It remains to show that Pr∞(A ⇒E B | E(τ )) = Pr∞(B | A ∩ E(τ )) for accessibility
relations E . In what follows I restrict attention to accessibility relations, E , and worlds τ
such that E(τ ) = E(π) whenever Eτπ . When this holds say that E is locally an equiva-
lence relation at τ . Intuitively these correspond to worlds where the evidence concerning
what the evidence is complete at the world w (for example, if the salient evidence is just my
current knowledge, then this means that I know what I do and don’t know.) The restriction
to these cases is purely an idealization – I do not think it is a general fact that the evidence
available in a context always behaves like this. Whether these idealizations can be relaxed
is a question I shall leave to future work.

We shall begin by showing how to write (A ⇒E B) ∩ E(τ ) as a disjunction of disjoint
sets as in the previous proof. Suppose that E is locally an equivalence relation at τ and that
E(τ ) ∈ B. For short let us write X for E(τ ) and suppose that the rank of A is α. Recall
that since X is a member of B, X = X ′ × W∞ for some X ′ ⊆ Wα .

LEMMA 4.7. Given the above definitions, (A ⇒E B) ∩ X = ⋃
n(A′ X ′n × AB X) ∩ X

Proof. Suppose π ∈ (A′ X ′n×AB X)∩X for some n. That means that π ∈ X , π [ωα.n] ∈
AB X and π [ωα.m] �∈ A and �∈ X for m < n.

Since π[ωα.n] ∈ X = E(τ ) this means that n is the smallest number such that π [ωα.n]
is both a member of A and E(τ ): i.e., f (A ∩ E(τ ), π) = π [ωα.n]. Since Eτπ , E(τ ) =
E(π) so f (A ∩ E(π), π) = π [ωα.n]. Moreover, since π [ωα.n] is B world, π ∈ A ⇒E B.
Since, by assumption, π ∈ X this shows one inclusion.

Now suppose that π ∈ (A ⇒E B)∩ X . Suppose that f (A∩ E(π), π) = π [ωα.n]. Since
π ∈ X = E(τ ) we know that Eτπ , and thus that E(π) = X = E(τ ). f (A ∩ E(π), π) =
f (A ∩ X, π) ∈ AB X which means that π ∈ A′ X ′n × AB X (just as in the last theorem.)
Thus π ∈ ⋃

n(A′ X ′n × AB X) ∩ X completing the proof. �
We shall now demonstrate that CP holds in this model.

THEOREM 4.8. If X ∈ �0 and Pr ∈ P then Pr(A ⇒E B|X) = Pr(B | AX).

Proof. Suppose that X = X ′ × W∞ where X ′ ⊆ W . Then in general, for any α, and
A0 . . . Ak ⊆ Wα , (A0 ×· · ·× Ak × W∞)∩ X = (A0 ∩ (X ′ × Wα))× A1 ×· · ·× Ak × W∞.

By 4.7 (A ⇒E B) ∩ X = ⋃
n(A′(X ′ × Wα)

n × AB X) ∩ X . By the above observation

this amounts to AB X ∪ ⋃
n>0(A′(X ′ × Wα) ∩ X ′ × Wα) × (A′(X ′ × Wα)

n−1 × AB X),

which simplifies to AB X ∪ ⋃
n>0(A′ ∩ X ′ × Wα) × (A′(X ′ × Wα)

n−1 × AB X)

Now Pr((A ⇒E B)∩X) = Pr(AB X)+�n Pr(
⋃

n>0(A′∩X ′×Wα)×(A′(X ′ × Wα)
n−1

× AB X)). Simplifying we get Pr(AB X) + �n>0 Pr(AX)Pr(AX)n−1 Pr(AB X)
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= Pr(AB X) + Pr(AX)�n>0 Pr(AX)n−1 Pr(AB X). And finally, as in theorem 4.6 this
amounts to Pr(AB X) + Pr(AX) Pr(AB X)

1−Pr(AX)
= Pr(AB X) + Pr(AX)Pr(B|AX).

To get Pr(A ⇒E B | X) we simply divide this number by Pr(X), which simplifies to
Pr(AB | X) + Pr(A | X)Pr(B|AX). This reduces to Pr(AB | X) + Pr(B | AX) −
Pr(A | X)Pr(B | AX) using Pr( Ā | X) = 1 − Pr(A | X). Note that by the definition
of conditional probability Q(AB) = Q(A)Q(B | A), so Pr(AB | X) = Pr(A | X)
Pr(B | AX). Thus the last expression cancels out to Pr(B | AX) as required. �

§5. Appendix B: Tenability result with fullness. Here we construct instead a prob-
ability frame that is normal, full, and satisfies Stalnaker’s condition. However, unlike the
previous construction, this construction does not satisfy Harper’s condition. Here it will be
useful to use Stalnaker’s original selection function semantics in which f maps us into W
(so f (A, x) picks out a world instead of a singleton of a world. When A crashes, f (A, x)
picks out a distinguished object, #, the impossible world, instead of the empty set.) In this
model we use only probability functions defined over the real numbers – to distinguish
these we shall use Greek letters ‘μ’, ‘ρ’ and so on, to denote measures on the reals with
‘λ’ being reserved for the standard Lebesgue measure.

Given a probability space 〈W, �,μ〉 we define a subspace of W to be those spaces of
the form 〈X, � ∩ P(X), μ(· | X)〉 with X ∈ �. I shall write μX for μ(· | X) and �X for
� ∩ P(X).

We need to employ a notion from measure theory – that of a measure-preserving map:

DEFINITION 5.1. Let X and Y be subspaces of W . A map, t : X → Y , is measure
preserving on the spaces 〈X, μX 〉, 〈Y, μY 〉 iff (i) t−1(A) is measurable in X when A is in
Y and (ii) μX (t−1(A)) = μY (A) for each A in Y ’s sigma-algebra.

As usual, the preimage of a set A under the function f , written f −1(A), is defined as
{x | f (x) ∈ A}.
DEFINITION 5.2. A selection function, f , is stretchy on a probability space 〈W, �,μ〉 iff
for every measurable A ∈ W , the restriction of f (A, ·) to Ā, f (A, ·) : Ā → A, is measure
preserving on the spaces 〈 Ā, μ Ā〉, 〈A, μA〉. Here Ā just means W \ A.

PROPOSITION 5.3. Suppose that there exists a tuple 〈W, �,μ, tA〉 satisfying the fol-
lowing conditions:

1. � is a σ -algebra over W ,

2. μ a probability measure over � and for each nonempty A ⊆ W ,

3. tA : A → A, for each A ⊆ W ,

4. tA is measure preserving on 〈 Ā, μ Ā〉, 〈A, μA〉 whenever μ(A) ∈ (0, 1)

Then the selection function f defined as f (A, ·) = idA ∪ tA is stretchy, where idA is the
identity function on A. More precisely, f , as defined below, is stretchy:

f (A, x) = x if x ∈ A and f (A, x) = tA(x) if x ∈ Ā provided A is nonempty
f (∅, x) = #.

Any set A in � which has measure in (0, 1) is stretched out onto its complement by f
in a way that preserves the measure of its measurable subsets. (In the models we consider
any pair of sets, X and Y , with measures in (0, 1], can be stretched on to the other.)

Note also that f is normal and thus will validate CEM, MP, ID, 4, B, and C0. By
construction f (A, x) ∈ A and f (A, x) = x whenever x ∈ A. But notice further that
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A crashes ( f (A, x) = #) only if A = ∅, so the principles C0, B and 4 for crashing are
validated in this kind of model as well.31 So the logic of stretchy selection functions of this
type is at least L+C0+4+B. Whether the logic of stretchy selection functions generated this
way is exactly this logic bears further investigation.

It should be clear that Stalnaker’s thesis holds for any stretchy selection function. If
μ(A) = 0 then Stalnaker’s thesis vacuously holds. If μ(A) = 1 then (i) μ(B | A) = μ(B)
and (ii) t−1

A (B) ⊆ Ā has measure 0 so μ( f −1(A, B)) = μ(id−1
A (B)) + μ(t−1

A (B)) =
μ(AB) + 0 = μ(B). Suppose that μ(A) ∈ (0, 1). Note that f −1(A, B) = id−1

A (B) ∪
t−1
A (B) = AB ∪ t−1

A (B). Note that μ(t−1(B) | A) = μ(B | A), since tA is measure
preserving, so μ(t−1(B)) = μ(B | A)μ(A). Thus f −1(A, B) has a measure of μ(AB) +
μ(B | A)μ(A) = μ(B | A).

5.1. Existence of a model. Here we construct a full model, 〈W,B, f·, �, P〉, for CP.
In this model worlds will be identified with real numbers, with the constraint that the
selection functions fE are stretchy on each world E(x).

• W := [0, 1], w ∈ [0, 1].
• B := P([0, 1])
• P := {λ} where λ is the Lebesgue measure on [0, 1].
• � is the Lebesgue measurable subsets of [0, 1].
• fE is a normal selection function on E which is additionally stretchy on〈X, �X , λX 〉

for every measurable X = E(x) with positive measure.

One thing to note about this model is that I have only specified one ur-prior, λ. This does not
appear to be an essential restriction—the following proof works with any measure isomor-
phic to the Lebesgue measure, so we could equally well expand P to {λ′ | 〈[0, 1], �, λ′〉 ∼=
〈[0, 1], �, λ〉}—i.e., the set of measures on [0,1] with the Lebesgue measurable sets, that
are isomorphic to the Lebesgue measure.32 For example, while the Lebesgue measure is
generated by stipulating that the length of an interval (a, b) is b − a, the measure one gets
by stipulating that the ‘length’ of the interval (a, b) be given by b2 − a2 is isomorphic to λ
even though it is a very different measure.

I have thus explicitly defined every aspect of the model except for the selection functions,
fE , for accessibility relations E . I shall once again assume that E is locally an equivalence
relation around the actual world w. The only thing to prove, then, is that we can find
a stretchy selection function defined on the restricted conditional probability space over
E(w), where w is the actual world. Any extension of this function to the whole space
[0, 1] which only maps worlds to accessible worlds, and therefore in particular maps
E(w) to itself, will be a function of the desired type.33 Moreover, by construction, it will
be a stretchy selection function relative to the probability space gotten by conditioning
on E(w).

31 In my view neither C0 B nor 4 are valid; however, for the purposes of showing that a reasonable
logic is consistent with Stalnaker’s thesis this does not matter as every sublogic is also shown to
be consistent.

32 Here the relevant notion of isomorphism is the existence of an invertible measure preserving
function between the two spaces.

33 It would also be quite easy to ensure that the function is stretchy relative to E(x) for any x where
E is locally an equivalence relation by constructing a stretchy selection function on E(x) for each
such x and extending them jointly to the whole space.
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By proposition 5.3 it suffices to show that for any measurable E (of positive finite
measure) and measurable A ⊆ E where A, E \ A have positive finite measure, we can
find a measure preserving function from E \ A to A, tA. Indeed, we shall go one further
and show that for any two measurable sets of reals, X and Y , of positive and finite measure
there is a measure preserving function, t , from X to Y .

For existence of a model it thus suffices to prove the following34

THEOREM 5.4. Given any two measurable sets of reals, X and Y , of positive and finite
measure there is a measure preserving function, t ,from X to Y .

This is all we need to construct the relevant stretchy selection functions. If Ā and A have
positive measure we can use this theorem to choose a measure preserving map tA from
Ā to A.

In what follows I will need to talk about the Lebesgue measure, λ, and the renormalised
Lebesgue measures on X and Y , λX (·) = λ(·)/λ(X) and λY (·) = λ(·)/λ(Y ). However,
since this notation becomes hard to follow I shall rename the latter two measures as μX

and μY for ease of reading.
The basic idea for the proof of this theorem is to construct a pair of measure preserving

maps, f : X → [0, 1] and h : [0, 1] → Y , which can be composed to form a measure
preserving map from X to Y . Things are more transparent if we define h in terms of a
another measure preserving map, g : Y → [0, 1]. Here is how we define them:

• f : X → [0, 1]
• g : Y → [0, 1]
• h : [0, 1] → Y
• f (x) = μX ((−∞, x] ∩ X)
• g(y) = μY ((−∞, y] ∩ Y )

• h(α) =
{

y if there is exactly one y such that g(y) = α
a otherwise

here a can be any old member of Y , it does not matter which. We will also make use of the
following property of the Lebesgue measure.

Nifty fact: the Lebesgue measure, λ, is regular. This means that:

1. λ(S) = inf{λ(O) | S ⊆ O, O is open}
2. λ(S) = sup{λ(C) | C ⊆ S, C is closed}

LEMMA 5.5. f and g are measure preserving on open (and therefore closed) sets.

Proof. Since g is defined exactly analogously to f it suffices to show that f is measure
preserving on open sets.

Firstly note that by construction μX ( f −1((a, b))) = b − a.
Let O be an open set. Since O is open, it may be written as a countable union of disjoint

intervals,
⋃

i (ai , bi ). So μX ( f −1(O)) = μX ( f −1(
⋃

i (ai , bi ))) = μX (
⋃

i f −1((ai , bi )))
= �iμX ( f −1((ai , bi ))) = �i (bi − ai ) = λ(O) as required.

Now let C be a closed set, so C = [0, 1]\O for some open set O . So λ(C) = 1−λ(O) =
1 − μX ( f −1(O)) = 1 − μX ( f −1([0, 1] \ C)) = 1 − (1 − μX ( f −1(C))) = μX ( f −1(C)).
So f is measure preserving on closed sets too. �

34 I am indebted to Gareth Davies here for some helpful suggestions regarding this proof.
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THEOREM 5.6. f and g are measure preserving.

Proof. Let S ⊂ [0, 1] be a measurable set. Then by regularity (form 1) and the fact that
f is measure preserving on opens sets we have:

λ(S) = inf{λ(O) | S ⊆ O, O is open} = inf{μX ( f −1(O)) | S ⊆ O, O is
open} ≥ μX ( f −1(S))

Then by regularity (form 2) and the fact that f is measure preserving on closed sets we
have:

λ(S) = sup{λ(C) | C ⊆ S, C is closed} = sup{μX ( f −1(C)) | C ⊆ S, C is
closed} ≤ μX ( f −1(S))

So λ(S) = μX ( f −1(S)) as required. The argument that g is measure-preserving is
exactly analogous. �

Now to finish the argument we have

THEOREM 5.7. h is measure preserving.

Proof. Suppose that Z ⊆ Y .
Our strategy will be to show that μY (Z) = μY (g−1(h−1(Z))). This suffices since

μY (g−1(h−1(Z))) = λ(h−1(Z)) by the fact that g is measure preserving. Here goes.
g−1(h−1(Z)) = {y | g(y) ∈ h−1(Z)} = {y | ∃!z : g(z) = g(y) and z ∈ Z} = Z \ {y |

g(y) = g(z) for some z �= y} = Z \ g−1({α | |g−1({α})| > 1}).
Now note that the set S := {α | |g−1({α})| > 1} is countable. We can map S injectively

into Q as follows: if α ∈ S, then since |g−1({α})| > 1 there is a rational number, q,
strictly inside the convex hull of g−1({α}). So we can map α to q. This mapping is injective
because g is increasing: if α < β then the convex hull of g−1({α}) and of g−1({β}) overlap
at most at a boundary point (since, if α < β, g(x) = α and g(y) = β then x ≤ y) and we
have chosen q not to be a boundary point.

Now, of course, {α} has Lebesgue measure 0, so μY (g−1({α})) = 0 since g is measure
preserving. So g−1({α | |g−1({α})| > 1}) is a countable union of null sets, and is thus
a null set. So putting this all together we have μY (g−1(h−1(Z))) = μY (Z \ g−1({α |
|g−1({α})| > 1})) = μY (Z) − 0 = μY (Z).

So μY (Z) = μY (g−1(h−1(Z))). �
This completes the proof. To obtain a measure preserving map, t , from X to Y we simply

let t = h ◦ f .
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