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Quantum Mechanics as Classical Physics
Charles T. Sebens*y

Here I explore a novel no-collapse interpretation of quantum mechanics that combines
aspects of two familiar and well-developed alternatives, Bohmian mechanics and the
many-worlds interpretation. Despite reproducing the empirical predictions of quantum
mechanics, the theory looks surprisingly classical. All there is at the fundamental level
are particles interacting via Newtonian forces. There is no wave function. However, there
are many worlds.

1. Introduction. On the face of it, quantum physics is nothing like classical
physics. Despite its oddity, work in the foundations of quantum theory has
provided some palatable ways of understanding this strange quantum realm.
Most of our best theories take that story to include the existence of a very
nonclassical entity: the wave function. Here I offer an alternative that com-
bines elements of Bohmian mechanics and the many-worlds interpretation
to form a theory in which there is no wave function. According to this the-
ory, all there is at the fundamental level are particles interacting via New-
tonian forces. In this sense, the theory is classical. However, it is still un-
deniably strange, as it posits the existence of a large but finite collection of
worlds, each completely and utterly real. When an experiment is conducted,
every result with appreciable Born Rule probability does actually occur in
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QUANTUM MECHANICS AS CLASSICAL PHYSICS 267
one of these worlds. Unlike the many worlds of the many-worlds interpre-
tation, these worlds are fundamental, not emergent; they are interacting, not
causally isolated; and they never branch. In each of these worlds, particles
follow well-defined trajectories and move as if they were being guided by a
wave function in the familiar Bohmian way.

In this article I will not attempt to argue that this theory is unequivocally
superior to its competitors. Instead, I would like to establish it as a surpris-
ingly successful alternative that deserves attention and development, hope-
fully one daymeriting inclusion among the list of promising realist responses
to the measurement problem.

In section 2, I briefly review why quantum mechanics is in need of a
more precise formulation and discuss two no-collapse theories: the many-
worlds interpretation and Bohmian mechanics. I then go on to offer a rather
unlikable variant of Bohmian mechanics that adds to the standard story a
multitude of worlds all guided by the same wave function. This theory is
useful as a stepping stone on the way to Newtonian QM. Newtonian QM is
then introduced. As soon as Newtonian QM is on the table, sections 5 and 6
present one of the most significant costs associated with the theory: the
space of states must be restricted if the theory is to recover the experimental
predictions of quantummechanics. In sections 7–9, I discuss the advantages
of this new theory over Everettian and Bohmian quantum mechanics in
explaining the connection between the squared amplitude of the wave
function and probability. In section 10, I consider the possibility of modi-
fying the theory so that it describes a continuous infinity of worlds instead
of a finite collection, concluding that such a modification would be inad-
visable. In section 11, I propose two options for the fundamental ontology
of Newtonian QM. In section 12, I use Newtonian QM to explain the way
the wave function transforms under time reversal and Galilean boosts. Spin
is then discussed in section 13.

Some limitations of the theory presented here are worth stating up front.
First, just as hydrodynamics relies on approximating a discrete collection of
particles as a continuum, in its current form this theory must treat the dis-
crete collection ofworlds as a continuum.As this ismerely an approximation,
empirical equivalence with standard quantum mechanics is likely only ap-
proximate ðsec. 5Þ. Second, one must impose a significant restriction on the
space of states if the predictions of quantummechanics are to be reproduced
ðthe Quantization Condition; sec. 6Þ. Third, I will not discuss extending the
theory to handle multiple particles with spin or relativistic quantum physics.

Newtonian QM is a realist version of quantum mechanics based on the
theory’s hydrodynamic formulation ðoriginally due to Madelung 1927Þ. For
recent and relevant discussions of quantum hydrodynamics, see Holland
ð2005Þ andWyatt ð2005Þ. An approach much like Newtonian QMwas inde-
pendentlyarrivedat byHall,Deckert, andWiseman ð2014Þ.NewtonianQMis
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somewhat similar to Böstrom’s ð2012Þmetaworld theory1 and the proposal in
Tipler ð2006Þ. Related ideas about how to remove the wave function are
explored in Poirier ð2010Þ and Schiff and Poirier ð2012Þ, including a sug-
gestion of many worlds.

To avoid confusion, throughout the article I use “universe” to denote the
entirety of reality, what philosophers call “the actual world” and what in
these contexts is sometimes called the “multiverse,” reserving “world” for
the many worlds of quantum mechanics.

2. The Measurement Problem. If the state of the universe is given by a
wave function and that wave function always evolves in accordance with the
Schrödinger equation, then quantum measurements will typically not have
single definite outcomes. Actual measurements of quantum systems per-
formed in physics laboratories do seem to yield just one result. This, in brief,
is the measurement problem. There are various ways of responding.

According to Everettian quantum mechanics ði.e., the many-worlds in-
terpretationÞ, the wave function W is all there is. The evolution of the wave
function is always given by the Schrödinger equation,

i�h
y
yt
W ~x1;~x2; : : : ; tð Þ

5 o
k

2�h2

2mk

r2
k 1 V ~x1;~x2; : : : ; tð Þ

� �
W ~x1;~x2; : : : ; tð Þ;

ð1Þ

where W is a function of particle configuration ~x1;~x2; : : :ð Þ and time t, mk is
the mass of particle k, r2

k is the Laplacian with respect to~xk , and V is the
classical potential energy of particle configuration ~x1;~x2; : : :ð Þ at t. When an
observer performs a quantum measurement, the universal wave function
enters a superposition of the observer seeing each possible outcome. This is
not to be understood as one observer seeing many outcomes but as many
observers each seeing a single outcome. Thus, the theory is not obviously
inconsistent with our experience of measurements appearing to have unique
outcomes. According to Everettian quantummechanics, there is nothingmore
than the wave function, and therefore things like humans, measuring devices,
and cats must be understood as being somehow composed of or arising out of
the wave function. ðWallace ½2003, 2012� takes these things to be patterns or
structures in the universal wave function.Þ To summarize, here is what the
Everettian quantum mechanics says that there is ðthe ontologyÞ and how it
evolves in time ðthe dynamical lawsÞ.
1. The key difference with Newtonian QM is that Böstrom’s theory does not as thor-
oughly excise the wave function ðthe dynamics being given by ½1� not ½16�Þ.
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Ontology: ðIÞ universal wave function W ~x1;~x2; : : : ; tð Þ
Law: ðIÞ Schrödinger equation ð1Þ
A second option in responding to the measurement problem is to expand
the ontology so that the universe contains both a wave function evolving
according to ð1Þ and particles with definite locations. The time-dependent
position of particle k can be written as~xkðtÞ and its velocity as~vkðtÞ. The
wave function pushes particles around by a specified law,

~vk tð Þ5 �h

mk

Im
~rkW ~x1;~x2; : : : ; tð Þ
W ~x1;~x2; : : : ; tð Þ

" #
: ð2Þ

Experiments are guaranteed to have unique outcomes because humans and
their scientific instruments are made of particles ðnot wave functionÞ. These
particles follow well-defined trajectories and are never in two places at
once. This theory is Bohmian mechanics, also known as de Broglie-Bohm
pilot wave theory.
Ontology: ðIÞ universal wave function W ~x1;~x2; : : : ; tð Þ
ðIIÞ particles with positions~xkðtÞ and velocities~vkðtÞ
Laws: ðIÞ Schrödinger equation ð1Þ

ðIIÞ guidance equation ð2Þ
From ð1Þ and ð2Þ, one can derive an expression for the acceleration of
each particle,

mj~aj tð Þ52~rj Q ~x1;~x2; : : : ; tð Þ1 V ~x1;~x2; : : : ; tð Þ½ �; ð3Þ

where Q ~x1;~x2; : : : ; tð Þ is the quantum potential, defined by

Q ~x1;~x2; : : : ; tð Þ5 o
k

2�h2

2mk

r2
k jW ~x1;~x2; : : : ; tð Þj
jW ~x1;~x2; : : : ; tð Þj

� �
: ð4Þ

Since the focus of this article is not on Everettian or Bohmian quantum
mechanics, I have sought to present each as simply as possible. The best way
to formulate each theory—ontology and laws—is a matter of current debate.

3. Prodigal QM. As a precursor to the theory I will propose, consider the
following interpretation of quantum mechanics, which has both a many-
worlds and a Bohmian flavor. The wave function always obeys the Schrö-
dinger equation. There are many different worlds, although a finite number,
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each represented by a point in configuration space.2 There are more worlds
where |W|2 is large and less where it is small. Each world is guided by the
single universal wave function in accordance with the Bohmian guidance
equation, and thus each world follows a Bohmian trajectory through con-
figuration space. Let us call this ontologically extravagant theory Prodigal
QM.3Why include amultitude of worldswhenwe only ever observe one, our
own? We could simplify the theory by removing all of the worlds but one,
arriving at Bohmian mechanics ðValentini 2010, sec. 7Þ. But, less obviously,
it turns out that there is another route to simplification: keep the multitude
of worlds but remove the wave function. This option will be explored in the
next section.

According to Prodigal QM, the universe contains a wave function
W ~x1;~x2; : : : ; tð Þ on configuration space and a large number of worlds that
can be represented as points moving around in configuration space. The
arrangement of the worlds in configuration space is described by a number
density, r ~x1;~x2; : : : ; tð Þ, normalized so that integrating r over all of con-
figuration space gives one: ∫d3x1d3x2 : : : r5 1. Integrating r ~x1;~x2; : : : ; tð Þ
over a not-too-small volume of configuration space gives the proportion of
all of the worlds that happen to be in that volume at t. By hypothesis, worlds
are initially distributed so that

r ~x1;~x2; : : : ; tð Þ5 jW ~x1;~x2; : : : ; tð Þj2: ð5Þ

The velocities of the particles are described by a collection of velocity fields
indexed by particle number, k,

~vk ~x1;~x2; : : : ; tð Þ5 �h

mk

Im
~rkW ~x1;~x2; : : : ; tð Þ
W ~x1;~x2; : : : ; tð Þ

" #
: ð6Þ

In Prodigal QM, if there is a world at ~x1;~x2; : : :ð Þ at t the velocity of the
k th particle in that world is~vk ~x1;~x2; : : : ; tð Þ.4 With these velocity fields, the
equivariance property of the Bohmian guidance equation ð2Þ ensures that r
is always equal to |W|2 if it ever is ðsee Dürr, Goldstein, and Zanghì 1992,
sec. 3Þ.
2. The location of a single particle is given by a point in space, ð~xÞ. The locations of all
particles are given by a point in configuration space, ~x1;~x2; : : :ð Þ, where ~xi is the
location of particle i.

3. With a continuous infinity of worlds, Prodigal QM is mentioned in Valentini ð2010,
sec. 7Þ and in Barrett ð1999Þ ðin Barrett’s terminology, it is a Bohmian many-threads
theory in which all of the threads are taken to be completely realÞ; a closely related
proposal is discussed in Dorr ð2009Þ.
4. This is not true for Newtonian QM ðsee sec. 5Þ.
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Ontology: ðIÞ universal wave function W ~x1;~x2; : : : ; tð Þ
ðIIÞ particles in many worlds described by a world density
r ~x1;~x2; : : : ; tð Þ and velocity fields~vk ~x1;~x2; : : : ; tð Þ
Laws: ðIÞ Schrödinger equation ð1Þ

ðIIÞ guidance equation ð6Þ5
The use of densities and velocity fields is familiar from fluid dynamics. A
quick review will be helpful. Consider a fluid composed of N point particles
that each have mass m. The number density of these particles is n ~x; tð Þ,
normalized so that ∫d3x1d3x2 : : : n5 N . The mass density is m � n ~x; tð Þ.
Integrating n ~x; tð Þ over a not-too-small volume gives the number of particles
in that volume at t. Whereas n ~x; tð Þ gives the density of particles in three-
dimensional space, r gives the density of worlds in configuration space. The
velocity field for the fluid is~u ~x; tð Þ, defined as the mean velocity of particles
near~x at t.6 For an inviscid compressible fluid with zero vorticity, the time
evolution of n and~u are determined by a continuity equation,

yn ~x; tð Þ
yt

52~r � n ~x; tð Þ~u ~x; tð Þð Þ; ð7Þ

and a Newtonian force law,

m~a ~x; tð Þ52~r p ~x; tð Þ
n ~x; tð Þ 1 V ~x; tð Þ

� �
; ð8Þ

where V is the external potential, p is the pressure, and

~a ~x; tð Þ5 D~u ~x; tð Þ
Dt

5 ~u ~x; tð Þ � ~r
� �

~u ~x; tð Þ1 y~u ~x; tð Þ
yt

:

ð9Þ
tually, the second dynamical law is more specific than ð6Þ since it requires not just
he velocity fields obey ð6Þ but that each world follows an exact Bohmian trajectory
sec. 5Þ. The connection between r and W in ð5Þ, although not a dynamical law,
t best be thought of as a third law of Prodigal QM.

ore precisely, the number density and velocity field provide a good description of
article trajectories if to a good approximation: n ~x; tð Þ gives the average number of
les in a small-but-not-too-small region R centered about~x over a short-but-not-
hort period of time T around t divided by the volume of R, and~u ~x; tð Þ gives the
ge velocities of the particles in R over T . For more detail, see Chapman and
ling ð1970, sec. 2.2Þ. The connection between r and the~vks and the trajectories of
idual worlds could be spelled out along similar lines, but full rigor in the context of
onian QM would require a better understanding of the dynamics ðsee sec. 5 and
et al. 2014Þ.
N
H
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igure 1. Evolution of a single particle in the double-slit experiment according to
our different no-collapse theories. Vertical axis gives the position of the single par-
cle, and horizontal axis, time; |W|2 is shown as a contour plot, and particle trajecto-
ies as lines.
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The acceleration is given by the material derivative of ~u, not the partial
derivative, because a particle’s position in the fluid is time dependent.

The three quantum theories on the table thus far are applied to the double-
slit experiment in figure 1. In the bottom-right diagram is Everettian quan-
tum mechanics, where the universe is just a wave function. The particle’s
wave function is initially peaked at the two slits and then spreads out and
interferes as time progresses. When the particle hits the detector, a multitude
of worlds will separate via decoherence, and in each the particle will be
observed hitting at a particular point on the screen. In Bohmian mechanics,
one adds to the wave function an actual particle that follows a definite
trajectory in accordance with the guidance equation. In Prodigal QM, there is
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QUANTUM MECHANICS AS CLASSICAL PHYSICS 273
a wave function and a collection of worlds, each of which contains a particle
following a Bohmian trajectory. In NewtonianQM,whichwill be introduced
at the end of section 4, one retains the multitude of worlds but removes the
wave function.

4. Removing the Wave Function. One can derive an equation for the dy-
namics of particles in Prodigal QM that makes no reference to the wave
function. Once this is done, we can formulate an alternate theory in which
the superfluous wave function has been removed. This new theory, New-
tonian QM, will be the focus of the remainder of the article. The mathemati-
cal manipulations presented in this section are familiar from discussions
of Bohmian mechanics but take on a different meaning as derivations of
particle dynamics in Prodigal QM. Those who wish to skip the derivation
should simply note that ð16Þ is derivable from ð1Þ, ð5Þ, and ð6Þ.

As r 5 |W|2 ð5Þ, the wave function can be written in terms of the world
density and a phase factor as

W ~x1;~x2; : : : ; tð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r ~x1;~x2; : : : ; tð Þ

p
eiv ~x1;~x2;: : : ; tð Þ: ð10Þ

Plugging ð10Þ into the guidance equation ð6Þ generates

~vk ~x1;~x2; : : : ; tð Þ5 �h

mk

~rkv ~x1;~x2; : : : ; tð Þ; ð11Þ

relating~vk and v. ðAt this point, I will stop repeating the arguments ofW, r, v,
and~vk; they all depend on the configuration of particles and time.Þ

The evolution of the wave function W is given by the Schrödinger equa-
tion ð1Þ. Dividing both sides of ð1Þ byW and using ð10Þ, one can derive that
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Equating the imaginary parts, using ð11Þ, yields

yr
yt

5 2o
k

~rk � r~vkð Þ; ð13Þ

a continuity equation similar to ð7Þ. Equating the real parts of ð12Þ, using
ð11Þ, yields
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Acting with �h=mjð Þ~rj on both sides of ð14Þ and rearranging, making use of
ð11Þ and the fact that

~aj 5 o
k

~vk � ~rk

� �
~vj 1

y~vj
yt

; ð15Þ

gives

mj~aj 52~rj o
k

2�h2

2mk

r2
k

ffiffiffi
r

pffiffiffi
r

p
� �

1 V

� �
: ð16Þ

We have derived an equation of motion of the form F5 ma, similar to both
ð3Þ and ð8Þ.7 The last term in the brackets gives the classical potential energy
of the configuration of particles and makes no reference to the other worlds.
The other term looks like an interaction between the worlds. This term is the
quantum potential Q familiar from Bohmian mechanics ð4Þ, with |W| re-
placed by

ffiffiffi
r

p
.

Within Prodigal QM, we have seen that one can derive an equation that
determines the dynamics for all of the particles in all of the worlds without
ever referencing the wave function. Equation ð16Þ gives a way of calculating
the acceleration of a particle that does not mention W, as ð6Þ does, but only
depends on the density of worlds r and the potential V. In Prodigal QM, this
equation is derived, not part of the statement of the theory in the previous
section. But, what if we took it to be the primary equation of motion for the
particles?One can remove thewave function fromProdigal QM leaving only
the corresponding r and~vks. So long as one enforces ð16Þ, the dynamics for
particles will be essentially as they were in Prodigal QM.

Now we can formulate a new theory: Newtonian QM. Reality consists of
a large but finite number of worlds whose distribution in configuration
space is described by r ~x1;~x2; : : : ; tð Þ. The velocities of the particles in the
worlds are described by the velocity fields~vk ~x1;~x2; : : : ; tð Þ. The dynamical
law for the velocity fields is ð16Þ, a Newtonian force law. As the particles
move, the resultant shift in the distribution r is determined by ð13Þ. Ac-
cording to Newtonian QM, quantum mechanics is nothing but the New-
tonian mechanics of particles in many different worlds.
7. Th
eq. ½1
8. Th
is no
neith
migh

se sub
Ontology: ðIÞ particles in many worlds described by a world density
r ~x1;~x2; : : : ; tð Þ and velocity fields~vk ~x1;~x2; : : : ; tð Þ
Law: ðIÞ Newtonian force law ð16Þ8
is is the multiparticle version of Holland ð2005, eq. ½4.9�Þ and Wyatt ð2005
.7�Þ.
e continuity equation ð13Þ, although used alongside ð16Þ to calculate the dynamics
t here considered a dynamical law since it merely encodes the fact that worlds are
er created nor destroyed. As is mentioned in sec. 6, the Quantization Condition
t be considered a non-dynamical law.
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QUANTUM MECHANICS AS CLASSICAL PHYSICS 275
Comparing this statement of Newtonian QM to the formulation of Bohmian
mechanics in section 2, Newtonian QM is arguably the simpler theory. The
theory has a single dynamical law, and the fundamental ontology consists
only of particles. However, this quick verdict could certainly be contested,
especially in light of the discussion below: ð16Þ is not a fundamental law
ðsec. 5Þ; an unnatural restriction must be put on the space of states ðsec. 6Þ;
there are multiple ways to precisify ontology of the theory ðsec. 11Þ.

5. The Continuum Approximation. Since the number of worlds is taken
to be finite, the actual distribution of worlds will be highly discontinuous;
some locations in configuration space will contain worlds and others will not.
Still, we can use a smooth density function r to describe the distribution of
worlds well enough at a coarse-grained level ðsee n. 6Þ. The velocity field
~vk ~x1;~x2; : : :ð Þ gives the mean velocity of the kth particle in worlds near
~x1;~x2; : : :ð Þ, but the k th particle in a world at ~x1;~x2; : : :ð Þ may have a
somewhat different velocity from ~vk ~x1;~x2; : : :ð Þ. So, in Newtonian QM
worlds will typically only approximately follow Bohmian trajectories
through configuration space, just as fluid particles do not exactly follow
pathlines.9

In fluid dynamics, the use of a description of the fluid in terms of n and~u
is justified by the fact that we can calculate the dynamics of these coarse-
grained properties ðand othersÞ without needing to know exactly what all
the particles are doing. Also, it is the coarse-grained properties that we
measure ðBatchelor 1967, sec. 1.2; Chapman and Cowling 1970, sec. 5Þ.
What justifies the use of r and the~vks to describe the collection of worlds?
As it turns out, we can calculate the dynamics of these properties without
worrying about the exact locations of worlds via ð13Þ and ð16Þ. Once the
evolution of r and the~vks are known, we can use rðtÞ to get probabilities
ðsec. 9Þ and the~vkðtÞs to determine pathlines ðshowing that particles follow
Bohmian trajectoriesÞ.

The equation of motion for the theory ð16Þ treats the collection of worlds
as a continuum. It fails to be a fundamental law since it does not describe the
precise evolution of each world and is not valid if there are too few worlds to
be well described as a continuum. Slight deviations from standard quantum
mechanical behavior should be expected due to the fact that there are only a
finite number of worlds; worse deviations, the fewer worlds there are. Future
experiments may observe such deviations and support Newtonian QM. As
textbook quantum mechanics works well, we have reason to believe there
are a very large number of worlds. ðThe situation here is similar to that of
spontaneous collapse theories, which are in principle empirically testable.Þ
Ultimately, the quantum contribution to the force in ð16Þ should be derivable
from a more fundamental interworld interaction. One should be able to
9. A pathline gives the trajectory of a particle always traveling at the mean velocity~u.
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calculate the forces when there are only a handful of worlds. One hopes that
future research will explain how the continuum approximation arises from a
“microdynamics” of worlds just as fluid dynamics arises from the micro-
dynamics of molecules. For some progress in this direction, see Hall et al.
ð2014Þ.

6. Reintroducing the Wave Function. In section 4 we saw that for any
wave function WðtÞ obeying the Schrödinger equation, there exists a world
density rðtÞ and a collection of velocity fields~vkðtÞ obeying ð16Þ such that
the relations between W, r, and the~vks expressed in ð5Þ and ð6Þ are satisfied
at all times. The converse does not hold. There are some combinations of r
and the~vks, that is, some ways the universe might be according to New-
tonian QM, that do not correspond to any wave function. In general, we
restrict our attention to combinations of r and the~vks that can be derived
from a wave function, via ð5Þ and ð6Þ, as it is these states that reproduce the
predictions of quantum physics. For such states, it may be useful to intro-
duce a wave function,W, even though it is not a fundamental entity and does
not appear in the equation of motion of the theory ð16Þ. The wave function
serves as a convenient way of summarizing information about the positions
and velocities of particles in the various worlds; the magnitude encodes the
density of worlds ð5Þ, and the phase encodes the velocities of particles ð11Þ.
The wave function need not be mentioned in stating the theory or ðin prin-
cipleÞ for deriving empirical predictions, but introducing a wave function is
useful for making contact with standard treatments of quantum mechanics.

As was just mentioned, there are some states of the universe in Newto-
nian QM that do not correspond to quantum wave functions.10 That is, there
are some combinations of r and the~vks for which one cannot find a wave
function W that satisfies ð5Þ and ð6Þ. The amplitude of W follows straight-
forwardly from r, but not every set of velocity fields~vk can be expressed as
�h=mk times the gradient of a phase ð11Þ. For this to be the case, we must
impose a constraint on the velocity fields.11
10. T
hydro
eq. ½4
11. T
irrota
tentia

se sub
Quantization Condition. Integrating the momenta of the particles along
any closed loop in configuration space gives a multiple of Planck’s con-
stant, h5 2p�h.

∮ o
k

mk~vk � d~‘k
h i	 


5 nh: ð17Þ
his point was made concisely by Wallstrom ð1994Þ in the context of quantum
dynamics; it was noted earlier by Takabayasi ð1952Þ. See also Holland ð2005,
.14�Þ.
his is loosely analogous to the constraint on the fluid velocity field ~u that it be
tional ðeverywhere zero vorticityÞ, which is required to introduce a velocity po-
l ðand for the validity of ½8�Þ.
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If the Quantization Condition is satisfied initially, ð16Þ ensures that it will
be satisfied at all times.

To see one sort of constraint this requirement imposes, think about the
following case: a single electron orbiting a hydrogen nucleus in the n 5 2,
l 5 1, m 5 1 energy eigenstate. For simplicity, take the nucleus to provide
an external potential and the universe to contain many worlds with a single
electron in each. The electron’s wave function is

W2;1;1 r; v; fð Þ5 21

8
ffiffiffiffiffiffiffi
a5p

p e
2r
2aeifr sinv; ð18Þ

where a is the Bohr radius. The guidance equation tells us that the par-
ticle in each world executes a circle around the z-axis with velocity
vf 5 �h=mr sinv, entirely in the f̂ direction ðhere ϕ is the azimuthal angleÞ.
Equation ð17Þ is trivially satisfied since m�h=mr sinvð Þ � 2pr sinv5 h. But,
if the electrons were circling the z-axis a bit faster or a bit slower the inte-
gral would not turn out right and ð17Þ would not be satisfied; they could orbit
twice as fast but not 1.5 times as fast.

Without the Quantization Condition, NewtonianQMhas too large a space
of states. There are ways the universe might be that are quantummechanical
and others that are not. It is easy to specify what universes should be ex-
cluded, those that violate ð17Þ, but hard to give a principled reasonwhy those
states should be counted as unphysical, improbable, or otherwise ignorable.
For now, I think it is best to understand the Quantization Condition as an
empirically discovered feature of the current state of the universe, or equiv-
alently, of the initial conditions. However, one might prefer to think of it as
a non-dynamical law. A better explanation of the Quantization Condition’s
satisfaction would help strengthen Newtonian QM, as it might seem that the
best possible explanation of the condition’s satisfaction is the existence of a
wave function ðbacktracking to Prodigal QMÞ. In the remainder of the arti-
cle, I assume that the Quantization Condition is satisfied.

Suppose the world density and the velocity fields at a time are given.
Provided theQuantizationCondition is satisfied, there exists a wave function
satisfying ð5Þ and ð6Þ. But, is it unique?12 That is, can ð5Þ and ð6Þ be used to
define W in terms of r and the ~vks?13 First consider the case where r is
everywhere nonzero. The magnitude ofW can be derived from ð5Þ, and ð11Þ
gives the phase up to a global constant. The wave function can be deter-
12. Here the question is considered at the level of the continuum description. Because
there are multiple ways of coarse graining, there will be multiple not-too-different rs and
~vks that well describe any finite collection of worlds and thus many wave functions. I
may be that some ways of coarse graining avoid the problems raised below by ensuring
that the velocity fields are always well defined. If they do, the derivability of W from r
and the ~vks comes at the cost of limiting the wave functions one can recover, losing
those in ð18Þ, ð19Þ, and ð21Þ.
13. See also the discussion in Holland ð2005, sec. 4Þ.
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mined up to a global phase. This would be insufficient if the overall phase
mattered, but as the global phase is arbitrary this gives exactly what we
need. Actually, it is even better this way. The fact that the dynamics do not
care about the overall phase is explained in Newtonian QM by the fact that
changes in the global phase of the wave function do not change the state
of the universe; that is, they do not change r or the~vks.

If the region in which r ≠ 0 is not connected, the wave function is not
uniquely determined by r and the~vks—one can introduce arbitrary phase
differences between the separate regions. As an example of the breakdown
of uniqueness, consider the second energy eigenstate of a single particle in
a one-dimensional infinite square well of length L. In this case the wave
function is

wa xð Þ5
ffiffiffi
2

L

r
sin

2px

L

� �
: ð19Þ

This describes a universe with r and~v given by

r xð Þ5 2

L
sin2 2px

L

� �

~v xð Þ5
0 if x ≠

L

2

undefined if x5
L

2

8><
>: :

ð20Þ

The velocity field ~v is undefined where there are no worlds. These ex-
pressions for r and~v are also compatible with14

wb xð Þ5
ffiffiffi
2

L

r ����sin 2px

L

� �����: ð21Þ

This exposes an inconvenient indeterminism: the time evolution of wa is
trivial as it is an energy eigenstate. Since wb is not differentiable at L /2, its
time evolution cannot be calculated straightforwardly using the Schrödinger
equation ð1Þ. As ð5Þ and ð6Þ do not determine which wave function is to be
14. The wave function wb has the disreputable property of not being smooth. It should be
noted that there exist pairs of distinct smooth nonanalytic wave functions that agree on r
and ~v at a time. ðThanks to Gordon Belot for suggesting an example like this.Þ For
example,

wa xð Þ5
Ce

21
12 x12ð Þ2 if 23 < x < 21

2Ce
21

12 x22ð Þ2 if 1 < x < 3

0 else

8><
>:

wb xð Þ5 jwa xð Þj:
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used to describe the state in ð20Þ, it is not clear how the state will evolve.
The future evolution of the universe is not uniquely determined by the in-
stantaneous state ð20Þ, the continuity equation ð13Þ, and the equation of
motion ð16Þ. This indeterminacy arises because r is zero and the velocity
field is undefined at L / 2, so yr=yt and ~a are undefined at L / 2. There is
reason to think this indeterminism is an artifact of the continuum approx-
imation, where ð13Þ and ð16Þ need the velocity fields to be well defined at
every point in configuration space—even where there are no worlds—to
yield a unique time evolution. The fundamental dynamics should take
as input a specification of the position of each world in configuration space
and the velocities of the particles in those worlds, all of which will be well-
defined ðsec. 5Þ.

Consider a slightly different problem from that just considered: suppose
one would like to find a wave function WðtÞ that describes a history of rðtÞ
and the~vkðtÞs, satisfying ð13Þ and ð16Þ over some time interval. There will
be a collection of wave functions that satisfy ð5Þ and ð6Þ at each time. For
any such wave function, one can multiply it by a spatially homogeneous
time-dependent phase factor, eif ðtÞ, to get another wave function that always
satisfies ð5Þ and ð6Þ. ðThe global phase at each time is arbitrary and ½5� and
½6� do nothing to stop you from picking whatever global phase you would
like at each time.Þ In general, some of these wave functions will satisfy the
Schrödinger equation ð1Þ, and others will not. To constrain the time de-
pendence of the phase when using a wave function to describe histories,
ð14Þ can be imposed as a third link between the wave function and the
particles ðin addition to ½5� and ½6�Þ. Because ð5Þ, ð6Þ, ð13Þ, and ð14Þ hold,
the wave function must obey the Schrödinger equation.

This section began with the observation that there are states in Newtonian
QM that cannot be described by a wave function. However, these can be
excised by imposing the Quantization Condition. Given a state that can be
described by a wave function, one might hope that this wave function would
be unique. Sometimes it is not. A wave function aptly describes a state in
Newtonian QM at a time if ð5Þ and ð6Þ are satisfied. But, if these are the only
constraints, a history in Newtonian QM can always be described by many
wave functions. So, there is freedom to add a third connection between the
wave function and the particles. Imposing ð14Þ proves a convenient choice,
as it guarantees that the wave function obeys the Schrödinger equation—a
desirable feature since the point of introducing a wave function was to clar-
ify the connection between Newtonian QM and standard treatments of quan-
tum mechanics.

Because a wave function can be introduced to describe the world density
and the velocity fields, one is free to use well-known techniques to calculate
the time evolution of the wave function and use that to determine how the
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world density and velocity fields evolve. However, there is evidence that it
is sometimes easier to use the trajectories of worlds to calculate the time
evolution ðWyatt 2005; Hall et al. 2014Þ.

7. Probability versus Everettian Quantum Mechanics. The Born Rule is
easier to justify in Newtonian QM than in the many-worlds interpretation. In
Everettian quantummechanics, there is dispute over how one can evenmake
sense of assigning probabilities to measurement outcomes when the way
the universe will branch is deterministic and known ðthe incoherence prob-
lemÞ. There is also the quantitative problem of why the Born Rule probabil-
ities are the right ones to assign. Recent derivations tend to appeal to com-
plex decision-theoretic arguments, which, although they may ultimately be
successful, are not uncontroversially accepted ðSaunders et al. 2010Þ. Things
look worrisome because there are some prima facie plausible ways of count-
ing agents that yield the result that the vast majority of agents see relative
frequencies of experimental outcomes that deviate significantly from those
predicted by the Born Rule ðalthough the total amplitude-squared weight of
the branches in which agents see anomalous statistics is smallÞ. Newtonian
QM does not run into similar problems since the number of worlds in a
particular region of configuration space is always proportional to |W|2. At any
time, most agents are in high-amplitude regions. So, in typical measurement
scenarios, most agents will see long-run frequencies that agree with the
predictions of the Born Rule.

Were a proponent of Prodigal QM to claim similar advantages over
Everettian quantum mechanics, one could reasonably object that the Born
Rule is recovered only because it was put in by hand. In Prodigal QM, ð5Þ is
an additional postulate. In Newtonian QM, it is not. The density of worlds is
given by |W|2 because W is definitionally related to the density of worlds by
ð5Þ ðsee sec. 6Þ. The wave function is, after all, not fundamental but a mere
description of r and the~vks.

8. Probability versus Bohmian Mechanics. Although it is widely agreed
that the Born Rule can be justified in Bohmian mechanics, there is dis-
agreement about how exactly the story should go. In this section I briefly
discuss three ways of justifying the Born Rule in Bohmian mechanics and
then argue that Newtonian QM can give a cleaner story. First, though, note
an important similarity between the two theories. According to Newtonian
QM each world follows an approximately Bohmian path through config-
uration space. So if you think that worlds in which particles follow Boh-
mian trajectories are able to reproduce the results of familiar quantum
experiments, you should think worlds in Newtonian QM can too.

In Bohmian mechanics, not all initial conditions reproduce the statisti-
cal predictions of quantum mechanics. That is, not all specifications of the
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initial wave functionWð0Þ and particle configuration ~x1 0ð Þ;~x2 0ð Þ; : : :ð Þ yield
a universe in which experimenters would see long-run statistics of mea-
surements on subsystems that agree with the predictions of the Born Rule.
Why should we expect to be in one of the universes with Born Rule sta-
tistics? One way to respond to this problem is to add a postulate to the
theory that ensures that ensembles of particles in the universe will ðor al-
most certainly willÞ display Born Rule statistics upon measurement ðe.g.,
Holland 1993, sec. 3.6.3Þ. A second option is to argue that typical universes
are such that Born Rule frequencies will be observed when measurements
are made ðDürr et al. 1992Þ. To say that such results are “typically” observed
is to say that for any initial wave function Wð0Þ, the vast majority of initial
particle configurations reproduce Born Rule statistics. Speaking of the “vast
majority” of initial configurations only makes sense relative to a way of mea-
suring the size of regions of configuration space; here the measure used is
given by |W|2. A third option: one could argue thatmany initial stateswill start
to display Born Rule statistics sufficiently rapidly that, since we are not at the
beginning of the universe, we should expect to see Born Rule frequencies
now even if such frequencies were not displayed in the distant past ðValentini
and Westman 2005Þ.

Each of these proposals faces challenges. The additional postulates that
might be added to the theory look ad hoc. The measure used to determine
typicality must be satisfactorily justified.15 The desirable evolution of states
described in the third option has only been demonstrated in relatively sim-
ple cases. Also, there will certainly exist initial conditions that do not come
to display Born Rule statistics sufficiently rapidly, and these must somehow
be excluded. To the extent that one finds these objections to Bohmian strate-
gies worrisome, it is an advantage of the new theory that it avoids them.

Although Newtonian QM, like Bohmian mechanics, permits a particular
world to have a history of measurement results in which the frequencies of
outcomes do not match what one would expect from the Born Rule, it is
impossible for the density of worlds to deviate from |W|2. So, in light of the
results in Dürr et al. ð1992Þ, it will always be the case that Born Rule
statistics are observed in the vast majority of worlds in any universe of
Newtonian QM. Since we are not sure which world we are in, we should
expect to be in one in which Born Rule statistics are observed.

9. Probability: Newtonian QM. If the universe’s evolution is deterministic
and the initial state is known, what is there left for an agent to assign prob-
abilities to? There is no incoherence problem in Newtonian QM since, given
the state of the universe, one is generally uncertain which of the many dis-
15. For a statement of the objection, see Dickson ð1998, sec. 5.4Þ. For a variety of
reasons to regard the measure as natural, see Goldstein and Struyve ð2007Þ.
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tinct worlds one is in. There will always bemany possibilities consistent with
one’s immediate experiences. The uncertainty present here is self-locating
uncertainty ðsee Lewis 1979Þ. Of course, there will generally also be uncer-
tainty about the state of the universe.

On to the quantitative problem:16 given a particular distribution of worlds r
and set of velocity fields~vk , that is, given a specification of the state of the
universe, one ought to assign equal credence to being in any of the worlds
consistent with one’s evidence.17 Because there are only a finite number of
worlds, this advice is unambiguous. As it turns out, this basic indifference
principle suffices to derive the correct quantum probabilities. Consider an
idealized case in which the agent knows the world density and the velocity
fields and knows that there is an agent in each of these worlds having
experiences indistinguishable from her own. In this case, the above indif-
ference principle tells her to assign probabilities to being in different regions
of configuration space in accordance with r. Since r5 |W|2, she must assign
credences in accordance with |W|2 and thus in agreement with the Born Rule.
Next, suppose thisagent learns theoutcomeofanexperiment.Thensheought to
assign zero credence to the worlds inconsistent with her evidence and reap-
portion that credence among those that remain ðkeeping the probability of
each noneliminatedworld equalÞ. This updating is analogous to learningwhich
branch you are on after a measurement in Everettian quantum mechanics.

In general, the probability agent S ought to assign to her own world hav-
ing property A, conditional on a particular state of the universe at a certain
time, is

Pr Ajr;~v1;~v2; : : :ð Þ5 # of worlds with property A and a copy of S

# of worlds with a copy of S

5
E dVASr ~x1;~x2; : : :ð Þ

E dVSr ~x1;~x2; : : :ð Þ
5
E dVAS jW ~x1;~x2; : : :ð Þj2

E dVS jW ~x1;~x2; : : :ð Þj2
:

ð22Þ

Here A could be something like “the pointer indicates 7” or “the particle just
fired will hit in the third band of the interference pattern.” The volume VS

delimits the set of worlds, specified by a region of configuration space, com-
patible with S’s data.Worlds in this region are such that previous experiments
had the outcomes S remembers them having, macroscopic arrangements of
particlesmatchwhat S currently observes, and someperson is having the same
16. See also the discussion in Boström ð2012, sec. 2.4Þ.
17. This follows from a more general epistemic principle defended in Elga ð2004Þ.
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conscious experiences as S.18 The volume VAS gives the set of worlds compat-
iblewithS’sdata inwhichAholds.19Theseconditionalprobabilitiescanbeused
to test hypotheses about r and the~vks and thus to learn about the state of the
universe ðnot just one’s own worldÞ from experience.

10. Continuous Infinity or Mere Multitude of Worlds? So far, we have
taken r to describe the distribution of a large but finite number of worlds.
But, one might be tempted to defend a variant of Newtonian QM in which
there is a continuous infinity of worlds, one at every point at which r is non-
zero. This causes trouble. The meaning of r becomes unclear if we move to
a continuous infinity of worlds since we can no longer understand r as yield-
ing the proportion of all worlds in a given volume of configuration space upon
integration over that volume. There would be infinite worlds in any finite
volume ðwhere r ≠ 0Þ and infinite total worlds. If r does not give the pro-
portion of worlds in a region, it is unclear why epistemic agents should
apportion credences as recommended in the previous section. So, the con-
tinuous variant, if sense can be made of it, faces the quantitative probability
problem head on.

As discussed in section 5, the dynamical law proposed for NewtonianQM
ð16Þ is not fundamental. If it somehow turns out that we cannot view the
force caused by the quantum potential as arising from an interaction between
individual worlds, this would provide a reason to accept a continuous infinity
of quantum worlds over a mere multitude. It might appear to be a strength of
the continuous variant that its laws can already be precisely stated, but I
expect that this advantage will evaporate when possible fundamental inter-
actions are formulated for the discrete variant. The continuous variant does
have a serious advantage: the continuum approximation ðsec. 5Þ is no ap-
proximation. Particles will unerringly follow Bohmian trajectories.

11. Ontology. According to Newtonian QM, what the universe contains is
a finite collection of worlds. There are at least two ways to precisify this
idea. First, one might take configuration space to be the fundamental space,
inhabited by point particles ðworldsÞ. Second, one might take the funda-
mental space to be ordinary three-dimensional space, inhabited by particles
in different worlds.

According to the first picture, on the fundamental level, the universe
is 3N-dimensional and contains a large number of point particles, each
of which has dynamics so complex that it merits the name of “world”
18. For simplicity, I have neglected the possibility that S’s memories or current obser-
vations are deceptive.

19. Note that the boundaries of VS and VAS will often depend on r and the~vks.
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or “world particle.” Forces between these world particles are Newtonian
and the dynamics are local. Here Newtonian QM is a theory of the New-
tonian dynamics of a fluid of world particles in 3N-dimensional space.
Albert ð1996Þ has argued that the one world of Bohmian mechanics can be
understood as a world particle that moves around in configuration space
guided by the wave function. He provides a way of explaining how the
appearance of a three-dimensional world arises from the motion of this
world particle that applies mutatis mutandis to Newtonian QM in which
there are more world particles executing the same old Bohmian dances.

On the second picture there are particles interacting in three-dimensional
space, nothing more.20 Space is very densely packed with particles, but not
all particles are members of the same world. Some particles are members of
world 1, some of world 2, and so on. What world a particle belongs to might
be a primitive property, like its mass or charge. The equation of motion for a
particle in world 827, ð16Þ, says that the force from the potential V depends
only on the positions of the other particles in world 827. However, the
quantum potential introduces an interworld force whereby particles that are
not members of world 827 can still affect the trajectory of a particle in this
world. So, particles that happen to be members of the same world interact in
one way, whereas particles that are members of different worlds interact
another way.

In the many-worlds interpretation, one must tell a somewhat complicated
story about how people and quantum worlds arise as emergent entities in the
time-evolving quantum state ðe.g., Wallace 2003Þ. This story may not be suc-
cessful. It might be the case that wave functions evolving in accordance with
the Schrödinger equation are incapable of supporting life or at least lives
that feel like ours ðMaudlin 2010Þ. If that is right, Newtonian QM has a
potential advantage. On the second ontological picture, people are built
from particles in the usual way. On the first ontological picture, there is a
story about emergence that must be told, but the details of the story are very
different from the Everettian one, and it succeeds or fails independently.

If, however, the Everettian story about emergence is successful, then
Bohmian mechanics ðas formulated hereÞ faces the Everett-in-denial objec-
tion ðDeutsch 1996; Brown and Wallace 2005; Valentini 2010Þ. Both Eve-
rettian and Bohmian mechanics contain in their fundamental ontology a
wave function that always obeys the Schrödinger equation. If such a wave
function is sufficient for there to be creatures experiencing what appears on
not-too-close inspection to be a classical world, then Bohmian mechanics,
like Everettian quantum mechanics, includes agents who see every possible
20. This second option resembles the novel ontology for the many-worlds interpretation
proposed by Allori et al. ð2011Þ.
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outcome of a quantum measurement. If the Everettian story about emer-
gence works and the Everett-in-denial objection against Bohmian mechan-
ics is successful, then Newtonian QM has a serious advantage over Bohmian
mechanics. Newtonian QM cannot be accused of being a many-worlds theory
in disguise since the theory embraces its many-worlds ontology.

12. Symmetries: Time Reversal and Galilean Boosts. Newtonian QM can
help us understand symmetry transformations in quantum mechanics. First,
consider time reversal. Albert ð2000Þ proposes an intuitive and general ac-
count of time reversal symmetry in physical theories that judges quantum
mechanics, in all of its familiar precisifications, to fail to be time-reversal
invariant. A deterministic physical theory specifies which sequences of in-
stantaneous states are allowed and which are forbidden through dynamical
laws. If the laws allow the time-reversed history of instantaneous states for
any allowed history of instantaneous states, then the theory is deemed time-
reversal invariant. In theories like Bohmian mechanics or Everettian quan-
tum mechanics, the instantaneous state includes the wave function at a time
W ~x1;~x2; : : : ; tð Þ and a complete history includes thewave function at all times.
The time reverse of the history is W ~x1;~x2; : : : ;2tð Þ, which will not neces-
sarily satisfy the Schrödinger equation whenever W ~x1;~x2; : : : ; tð Þ does—so
quantum mechanics is judged not to be time-reversal invariant. However,
W* ~x1;~x2; : : : ;2tð Þ will always satisfy the Schrödinger equation whenever
W ~x1;~x2; : : : ; tð Þ does ðstandard textbook accounts take this to be the time-
reversed history and thus judge the theory to be time-reversal invariantÞ.

In Newtonian QM, it is straightforward to show that time reversing the
history of particle trajectories amounts to changing the history of the wave
function from W ~x1;~x2; : : : ; tð Þ to W* ~x1 ;~x2; : : : ;2tð Þ. The instantaneous
state of the world is specified by giving the locations ðbut not the velocitiesÞ
of all of the particles in all of the worlds. The time-reversal operation thus
takes the history r ~x1;~x2; : : : ; tð Þ and vk ~x1;~x2; : : : ; tð Þ to r ~x1;~x2; : : : ;2tð Þ
and 2~vk ~x1;~x2; : : : ;2tð Þ. By ð11Þ, flipping the phase generates a wave func-
tion that describes the flipped velocities of particles in the time-reversed
history. The complex conjugation in the textbook time reversal operation
for quantum mechanics can be explained as deriving from a reversal in the
velocities of the particles.

Newtonian QM is time-reversal invariant according to Albert’s account.
Even if one does not agree with Albert’s account of time-reversal invari-
ance, it is a virtue of this theory over others that it can give a simple ex-
planation of why the wave function transforms in the textbook way under
time reversal.

Next, consider Galilean boosts. In a similar spirit to Albert’s criticism of the
standard account of time reversal, one could argue that quantum mechanics is
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not invariant under Galilean boosts since the equations of motion are not gen-
erally obeyedwhenwe takeW ~x1;~x2; : : : ; tð Þ to W ~x1 2~wt;~x2 2~wt; : : : ; tð Þ.21
The invariance of quantum mechanics under Galilean boosts is sometimes
demonstrated by showing that, for certain potentials, there exists a transforma-
tion of the state that appropriately shifts the probability density and guaran-
tees satisfaction of the Schrödinger equation ðe.g., Ballentine 1998, sec. 4.3Þ.
Under a boost by ~w, the wave function is supposed to transform as

W0 ~x1;~x2; : : : ; tð Þ
→~w W ~x1;~x2; : : : ; tð Þ5 e

i
�hok

mk~w �~xk21
2mk j~wj2tf gW0 ~x1 2~wt;~x2 2~wt; : : : ; tð Þ:

ð23Þ

It is interesting that there exists a transformation that moves probability
densities in the right way and guarantees that the Schrödinger equation is in-
variant under boosts, but it is unclear why this particular transformation is the
one that really represents Galilean boosts. In Newtonian QM this transforma-
tion of the wave function results from boosting the velocities of all of the
particles in all of the worlds.

Adding ~w to the velocity of each particle transforms the original density
r0ðtÞ and the original velocity fields~v0kðtÞ to

r ~x1;~x2; : : : ; tð Þ5 r0 ~x1 2~wt;~x2 2~wt; : : : ; tð Þ
~vk ~x1;~x2; : : : ; tð Þ5~v0k ~x1 2~wt;~x2 2~wt; : : : ; tð Þ1~w:

ð24Þ

Suppose W0ðtÞ, r0ðtÞ, and the~v0kðtÞs satisfy ð5Þ, ð6Þ, and ð14Þ; that is, W0ðtÞ
describes this density and these velocity fields. Then, the new wave function
WðtÞ generated by the transformation in ð23Þ will satisfy ð5Þ, ð6Þ, and ð14Þ
for the rðtÞ and~vkðtÞs in ð24Þ, provided that the potential V is translation
invariant ðas the reader can verifyÞ. Thus, ð23Þ gives a general recipe for
finding a wave function that correctly describes the boosted particles.

13. Spin-1/2 Particles. There appears to be serious trouble on the horizon
for this new theory. In Bohmianmechanics, spin is often treated as a property
of the wave function, not the particles pushed along by it ðe.g., Albert 1994,
chap. 7; Dürr and Teufel 2009, sec. 8.4Þ. So, if we remove the wave function,
it looks like we lose all of the information about the spin of the system.
Actually, there is a very natural way to extend Newtonian QM to a single
particlewith spin. Ifwe endow the particlewith a definite spin in everyworld,
we can recover the standard dynamics. Here I apply to Newtonian QM a
strategy that has been used in quantum hydrodynamics and ða version ofÞ
Bohmian mechanics ðsee Holland ½1993�, chap. 9, and references thereinÞ.
21. A point made by Albert in presentations. See also Valentini ð1997Þ.
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Consider the dynamics of a single spin-1/2 particle. To our basic
ontology, consisting of a distribution of worlds r ~x; tð Þwhere the particle has
velocity~v ~x; tð Þ in each world, let us add a property to the particle in each
world: spin magnetic moment. The spin magnetic moment ~u ~x; tð Þ of
a particle can be specified by a polar angle a ~x; tð Þ, an azimuthal angle
b ~x; tð Þ, and a constant m ðfor an electron, m ≈ 2e�h=2m, where e is the
magnitude of the electron’s chargeÞ.

~m5 m

sinacosb
sinasinb
cosa

0
@

1
A: ð25Þ

Alternatively, we can speak of the particle’s internal angular momentum~S,
which is related to ~m by

~S 5
�h

2m
~m: ð26Þ

With the magnetic moment in hand, we can partially define22 the spinor
wave function x from r and ~m by

x5
x1

x2

� �
5

ffiffiffi
r

p
cos

a

2
eivffiffiffi

r
p

sin
a

2
eiv1ib

0
@

1
A; ð27Þ

similar to ð10Þ. Here the z-spin basis is used to represent the spinor.
The Bohmian guidance equation for a spin-1/2 particle is

~v5
�h

m
Im

xy~rx

xyx

� �
: ð28Þ

Inserting the expression for x in ð27Þ yields

~v5
�h

m
~rv1

�h

m
sin2 a

2
~rb; ð29Þ

similar to ð11Þ.
The Pauli equation for a spin-1/2 particle in the presence of an external

magnetic field is

i�h
y
yt
x5

2�h2

2m
r2 1 V 2 m~B � j

	 

x; ð30Þ

where j are the Pauli spin matrices. To focus on spin, the contributions to
the Hamiltonian arising because the particle has a charge ðnot just a mag-
netic momentÞ have been omitted. From ð27Þ, ð29Þ, and ð30Þ one can derive
the time dependence of ~m and~v. The magnetic moment vector evolves as
22. This definition is only partial as v is left unspecified.
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�h

2m

d~m

dt
5

�h2

4mm2r
~m � ya r ya~mð Þ½ �1~m �~B

d~S

dt
5~m �~BTot;

ð31Þ

using the Einstein summation convention over spatial index a.23 The right-
hand side gives the net torque on the particle, which arises from a quantum
and a classical contribution. These torques can be combined by defining

~BTot 5~B1
�h2 ya r ya~mð Þ½ �

4mm2r
: ð32Þ

The net magnetic field ~BTot is the sum of a classical and a quantum con-
tribution. Equation ð31Þ gives the classical dynamics for the angular mo-
mentum of a magnetic dipole in the presence of the magnetic field ~BTot.

From ð27Þ, ð29Þ, and ð30Þ, it follows that the acceleration can be ex-
pressed as

m~a52~r Q1 QP 1 V½ �1 ma
~rBTota: ð33Þ

This is simply the equation of motion for a particle without spin ð16Þ with
two new terms: the classical force on a particle with magnetic moment ~m
from a magnetic field~BTot and a spin-dependent contribution to the quantum
potential,

QP 5
�h2

8mm2
~m � r2~m

� 

5

1

2m
~S � r2~S

� �
: ð34Þ

As with the quantum potential Q discussed in section 4, this new term
represents an interaction between worlds ðas does the quantum contribution
to the net magnetic field~BTotÞ. Together, the above equations of motion for~m
and~v, ð31Þ and ð33Þ, serve to define Newtonian QM for a single spin-1/2
particle. We can omit any mention of the spinor wave function x or the
phase v in the fundamental laws. The equations of motion for~m and~v, which
govern the evolution of r via ð13Þ, will guarantee that r,~m, and~vwill evolve
as if they were governed by a spinor wave function satisfying the Pauli
equation, provided that the velocity field obeys a constraint like the one
imposed for spin-0 particles in section 6,

∮ m~v2 �h sin2 a

2
~rb

�
� d~‘5 nh:

�
ð35Þ
23. Result is as in Holland ð1993, eq. ½9.3.15�Þ. Note that different conventions are
adopted for the sign of m. Equation ð33Þ is in agreement with Holland’s eq. ð9.3.19Þ,
although written in a more suggestive form.
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In Newtonian QM, particles have well-defined spin magnetic moments at
all times. How can the theory recover the results of standard experiments
involving spin if particles are never in superpositions of different spin states?
Consider, for example, a z-spin “measuring” Stern-Gerlach apparatus. Sup-
pose the wave function is in a superposition z-spin up and z-spin down:
1=

ffiffiffi
2

p� 

j↑zi1 1=

ffiffiffi
2

p� 

j↓zi. When passed through the inhomogeneous mag-

netic field, the wave function will split in two. On the standard account, the
particle will be found in either the upper region ðcorresponding to z-spin
upÞ or the lower region ðcorresponding to z-spin downÞ upon measurement
with equal probability. In Newtonian QM, there is initially an ensemble of
worlds, in each of which the particle has some initial position in the wave
packet and in all of which the particle’s spin magnetic moment points squarely
in the x direction. A particle in the top half of the initial wave packet has its
spin rotated to point in the z direction as it passes through the Stern-Gerlach
apparatus ðin accordance with ½31�Þ; a particle in the lower portion will end
up with spin pointing in the negative z direction. In this theory, the Stern-
Gerlach apparatus does not measure z-spin but instead forces particles to
align their magnetic moments along the z-axis. This is also how Stern-Gerlach
measurements are interpreted in versions of Bohmian mechanics in which
particles have definite spins ðsee Dewdney, Holland, and Kyprianidis 1986;
Holland 1993, chap. 9Þ.

14. Conclusion. An optimistic synopsis: once we realize that Newtonian
QM is a viable way of understanding nonrelativistic quantummechanics, we
see that we never needed to overthrow Newtonian mechanics with a quan-
tum revolution. One can formulate quantum mechanics in terms of point par-
ticles interacting via Newtonian forces. The mysterious wave function is
merely a way of summarizing the properties of particles, not a piece of fun-
damental reality.

There are a variety of reasons not to like this theory. First, there is arguably
a cost associated with the abundance of other worlds which, although de-
tectable via their interactions with our own world, are admittedly odd. Sec-
ond, the space of states for the theory is larger than one might like in two
distinct ways: There are possible combinations of r and the~vks that do not
correspond to any wave function because the velocity fields cannot be ex-
pressed as the gradient of a phase ðsec. 6Þ. There are also states of the
universe in which the number of worlds is not sufficiently large for the
continuum description to be valid ðsec. 5Þ. Even if there are a great many
worlds, slight divergence from the predictions of standard quantum me-
chanics is to be expected. Third, it is a shortcoming of the current formu-
lation of Newtonian QM that we must approximate the actual distribution of
worlds as continuous and cannot yet formulate the fundamental equation of
motion precisely for a discrete collection of worlds ðsec. 5Þ. Finally, the
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All u
theory is limited in that it is not here extended to systems of multiple par-
ticles with spin or to relativistic quantum physics.

In addition to its seductive conservatism, I view the following compara-
tive strengths as most compelling. Against the many-worlds interpretation,
Newtonian QM has two main advantages. First, there is no incoherence
problem or quantitative probability problem—the Born Rule can be justi-
fied quickly from self-locating uncertainty ðsec. 7Þ. Second, the theory
avoids the need to explain how worlds emerge from the wave function—
worlds are taken to be fundamental ðsec. 11Þ. Compared to Bohmian me-
chanics, the theory is arguably simpler—it replaces an ontology of wave
functions and particles with one just containing particles ðsec. 4Þ. Newto-
nian QM’s explanation of why we should expect our world to reproduce
Born Rule statistics is potentially more compelling than the Bohmian stories
ðsec. 8Þ. Also, Newtonian QM is forthright about its many-worlds character,
sidestepping the Everett-in-denial objection ðsec. 11Þ.
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