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Abstract

I develop a theory of counterfactuals about relative computability, i.e. counterfac-
tuals such as

If the validity problem were algorithmically decidable, then the halting problem
would also be algorithmically decidable,

which is true, and

If the validity problem were algorithmically decidable, then arithmetical truth
would also be algorithmically decidable,

which is false. These counterfactuals are counterpossibles, i.e. they have metaphys-
ically impossible antecedents. They thus pose a challenge to the orthodoxy about
counterfactuals, which would treat them as uniformly true. What’s more, I argue
that these counterpossibles don’t just appear in the periphery of relative com-
putability theory but instead they play an ineliminable role in the development of
the theory. Finally, I present and discuss a model theory for these counterfactuals
that is a straightforward extension of the familiar comparative similarity models.

1. Introduction

It is a well known feature of the orthodox possible-worlds approach to counter-
factual conditionals due to Robert Stalnaker (1968) and David Lewis (1973) that
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it makes all counterfactuals with metaphysically impossible antecedents come out
vacuously true. Many have pointed out that this so-called vacuity thesis runs counter
to our intuitions about the truth-values of many such counterpossibles. Some of
the proposed counterexamples to the vacuity thesis concern philosophical questions
such as what would be the case if the laws of metaphysics had failed or if certain
moral principles had been different, while others are about more ordinary topics
such as whether anyone would have cared if Hobbes had squared the circle or
what I would do if I were you.1 Against such proposed counterexamples, Timothy
Williamson (2007; 2010; 2015) has recently mounted a fresh defense of the vacuity
thesis by making a strong case for its many theoretical virtues. We have thus reached
an impasse where theoretical virtues are pitted against intuitive judgments.

In this paper, I put forth a reason for abandoning the vacuity thesis that doesn’t
rest on our intuitions. I do so by discussing a new source of trouble for the or-
thodoxy: relative computability theory. Textbook writers often introduce relative
computability with the help of counterfactual conditionals. For example, Martin
Davis writes that relative computability theory is concerned with the following:

We may ask, of a given problem P,

If we could solve P, what else could we solve?

And, we may ask,

The solutions to which problems would also furnish solutions to P?

(Davis 1958, 179, emphasis in the original)

After providing some background on relative computability theory, I will argue
that, just like other mathematical facts, the facts uncovered by relative computability
theorists are metaphysically necessary. So, on the assumption that P is not in fact
solvable, the vacuity thesis would have it that any answer to Martin’s first question
is true.

But the vacuity thesis doesn’t just find counterexamples in the way relative com-
putability theorists talk about their discipline in ordinary language. I will argue
that non-vacuous counterpossibles play an ineliminable role in relative computabil-
ity theory. The vacuity thesis thus threatens to declare an established science as
nonsensical.

Instead of abandoning relative computability theory in light of this, I will instead
draw from its resources to patch up the orthodoxy about counterfactuals. Like
previous attempts to revise the theory of counterfactuals, I will present a model
theory that makes use of so called ‘impossible worlds,’ world-like entities where
metaphysical impossibilities can hold.2 However, unlike earlier attempts, which
have run into trouble when it comes to expanding Lewis’ comparative similarity
relation to these new entities,3 I show that with the right choice of the set of
‘worlds,’ a comparative similarity relation immediately falls out of the mathematical
theory of relative computability that gives the right results for counterfactuals about
this theory. Questions remain about how to interpret my proposed model theory,
especially the ‘worlds’ involved. But given the continuity with the comparative
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similarity models for ordinary counterfactuals, these questions become tractable. I
close by drawing some tentative lessons for the general study of counterpossibles.

2. Background

Computability theory studies what sets of natural numbers are algorithmically de-
cidable (or ‘solvable,’ as in the above quote by Davis). By algorithmic decidability
we mean that a computing agent could, in principle, decide for any natural number
whether it is a member of the set by mechanically following a completely explicit
algorithm that terminates in the right answer in finite time and after finitely many
steps. An example of an algorithm is the truth table method, which allows us to
decide for any sentence of the propositional calculus whether it is a tautology. The
sets of natural numbers whose algorithmic decidability or lack thereof is of par-
ticular interest are those that represent certain well-formed problems. The validity
problem (sometimes simply called the decision problem) is the set that encodes the
sentences of the predicate calculus that are logically valid.4 To say that the validity
problem is algorithmically decidable would be to say that there is an algorithm that
would allow us to decide for any number representing a sentence of the language
of the predicate calculus whether it is a member of the set of the validity prob-
lem and so whether it is logically valid. It was a significant discovery by Alonzo
Church (1936a; 1936b) and Alan Turing (1936) that the validity problem is not
algorithmically decidable. Other sets that aren’t algorithmically decidable are the
halting problem, which encodes the problem of deciding whether a computer will
eventually halt when it’s given a certain input, and arithmetical truth, which encodes
the true sentences of the language of arithmetic.

As we already saw, relative computability theory is introduced by Martin Davis
using counterfactuals. Similarly, Hartley Rogers says (where to calculate the char-
acteristic function of a set amounts to algorithmically deciding the set):

Intuitively, A is reducible to B if, given any method for calculating [the characteristic
function of B], we could then obtain a method for calculating [the characteristic
function of A.] (Rogers, Jr. 1967, 127, emphasis in the original)

And, for a more recent example, Herbert Enderton writes:

On the one hand, we might be able to show that if, hypothetically speaking, we
could somehow decide membership in B, then we could decide membership in
A. This would lead us to the opinion that A is no more undecidable than B is.
(Enderton 2011, 121)

The study of relative computability was spearheaded by Turing (1939) and Emil
Post (1944) and later developed into a mature mathematical discipline using the
usual extensional tools of set theory and first-order logic by the likes of Richard
Friedberg, Stephen Kleene, Albert Muchnik, Rózsa Péter, and Post.5 In formal reg-
imentations of mathematics, the only conditional available is of course the material
conditional. We know now that counterfactual conditionals behave very differently
from material conditionals, but it wasn’t until a few years after Turing’s and Post’s
early papers appeared that counterfactual conditionals were identified as interesting
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objects of study.6 And it took another twenty years after that until the now stan-
dard possible worlds model theory for counterfactuals was worked out by Robert
Stalnaker and David Lewis.7 But with hindsight, we can ask the kind of questions
that we will be presently concerned with.

A basic result of relative computability theory is that the halting problem is
reducible to the validity problem.8 This fact can be expressed as follows:

(valid > halt) If the validity problem were algorithmically decidable, then the
halting problem would also be algorithmically decidable.

By contrast, arithmetical truth is not reducible to the validity problem. This means
that the following is false:

(valid > arith) If the validity problem were algorithmically decidable, then
arithmetical truth would also be algorithmically decidable.

How do we know this? And how, for that matter, do we know that the validity
problem, the halting problem, and arithmetical truth aren’t algorithmically decid-
able? We know all of this due to a combination of mathematical theorems and
two principles connecting the mathematical apparatus with the notions of algo-
rithmic decidability and reducibility. Take first the fact the validity problem, the
halting problem, and arithmetical truth aren’t arithmetically decidable. Church and
Turing established certain mathematical theorems that get us halfway towards es-
tablishing this fact. It will be most illuminating to follow Turing’s presentation of
the result. Turing introduced a class of abstract machines that are now called Tur-
ing machines. He then showed that the assumption that, say, the halting problem is
decidable by a Turing machine leads to a contradiction, akin to the contradiction
Cantor derived from the assumption that the cardinality of the natural numbers is
equal to the cardinality of the real numbers. Therefore, there isn’t a Turing machine
that decides the halting problem, or the validity problem or arithmetical truth for
that matter. This is the mathematical part. The other part involves what is nowadays
called the Church-Turing thesis. This thesis says that the sets that are algorithmically
decidable in the informal sense, i.e. the sets that are decidable by any algorithmic
means, are just the sets that are decidable by a Turing machine. Interpreted most
conservatively, this thesis claims that Turing machines are an adequate model of al-
gorithmic decidability.9 Putting the Church-Turing thesis together with the fact that
there’s no Turing machine that decides the halting problem, the validity problem,
or arithmetical truth gives us that these sets are algorithmically undecidable.

We know that the halting problem is reducible to the validity problem but
arithmetical truth isn’t for similar reasons, but with a twist. To establish these
results, we need oracle Turing machines. An oracle Turing machine is just like a
Turing machine, except that it has access to an ‘oracle.’ Oracles can be thought of as
external storage devices that contain the correct answer to any ‘yes’ or ‘no’ question
about a particular decision problem we may ask them. For example, an oracle for
the validity problem contains, for arbitrary sentences of the predicate calculus, the
answer to the question whether they are logically valid or not. Think of an oracle
Turing machine as just like an ordinary Turing machine, except that it has an extra
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port where we can plug in an oracular storage device.10 We can now show that an
oracle Turing machine with an oracle for the validity problem can algorithmically
transform the answers it gets about the validity problem into answers about the
halting problem. That’s how the halting problem is Turing reducible to the validity
problem. However, even if the oracle Turing machine can ask the oracle questions
about the validity problem, it won’t be able to transform these answers into answers
about arithmetical truth. That’s how arithmetical truth isn’t Turing reducible to the
validity problem. To get from these results, which can be stated and proved purely
mathematically, to the results that the halting problem is reducible simpliciter to
the validity problem but that arithmetical truth isn’t, we need an analogue of the
Church-Turing thesis. This thesis, which is variously called the Post-Turing thesis
or the relativized Church-Turing thesis, says that a set B is reducible simpliciter to a
set A iff B is Turing reducible to A.11

But what is this relation of reducibility simpliciter? We may understand the
claim that B is reducible to A as saying that if A were algorithmically decidable,
then B would be algorithmically decidable—hence the counterfactual locutions in
the above quotes from Davis, Rogers, and Enderton. In fact, I will argue that this
is the way of understanding the claim. This understanding runs into philosophical
trouble, however. For it is plausible that facts about what is and isn’t algorithmically
decidable are metaphysically necessary. The mathematical theorems involved in
showing that none of our three sets can be decided by a Turing machine hold
of course as a matter of metaphysical necessity. That it’s metaphysically necessary
that none of the sets are algorithmically decidable then follows by the fact that the
Church-Turing thesis is metaphysically necessary.

What reasons do we have for thinking that the Church-Turing thesis is meta-
physically necessary? Note that the limits of computation that Church and Turing
discovered aren’t merely technological. Church and Turing didn’t merely show that
we haven’t built the right kind of computer or discovered the right kind of algo-
rithm to decide the validity problem. In fact, Church and Turing’s result predates
the modern computer. Before anyone had built anything resembling a modern
computer, Church and Turing had already identified computational problems that
no computer could ever decide. And since the invention of the first computer, all
technological innovations in computing, including innovations involving quantum
computers that are yet to be realized,12 have merely lead to an increase in comput-
ing speed and efficiency; they never have and never will lead to an improvement
in what can be algorithmically decided. Furthermore, the limits of computation
that Church and Turning discovered also aren’t merely limits imposed by the actual
laws of nature. Church and Turing don’t argue for their conclusion that the validity
problem isn’t algorithmically decidable by showing that the laws of nature rule out
a computer that decides the validity problem.13 This suggests that the degree to
which it’s impossible to algorithmically decide the validity problem is stronger than
both technological or nomic impossibility. This suggests, but doesn’t yet prove, that
the Church-Turing thesis is indeed metaphysically necessary.14

There is also a direct argument for the metaphysical impossibility of the claim
that, say, the validity problem is algorithmically decidable. To say that the validity
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problem isn’t algorithmically decidable is just to say that there isn’t an algorithm
to decide the validity problem. But algorithms are abstract objects that are in-
dependent of human activity.15 As such, they are the kinds of thing that either
exist of metaphysical necessity or else don’t exist at all; and if they don’t exist,
then it’s metaphysically impossible that they exist. So if there isn’t an algorithm
to decide the validity problem, then it’s metaphysically impossible that there exists
such an algorithm, and so it’s metaphysically impossible that the validity prob-
lem is algorithmically decidable. Thus, (valid > halt) and (valid > arith) are indeed
counterpossibles.

The argument just presented relies on certain assumptions about metaphysi-
cal possibility and the modal metaphysics of abstracta, assumptions that may be
doubted. Nevertheless, the assumptions are perfectly in line with orthodox thinking
about these issues. So it follows from orthodox thinking about metaphysical pos-
sibility and the modal metaphysics of abstracta that it’s metaphysically impossible
that the validity problem is algorithmically decidable.16

It is important to be clear on what I am and am not claiming. I’m not claiming
that it’s metaphysically impossible to determine the members of the set correspond-
ing to the validity problem. It is entirely compatible with everything I’ve said that
some deity would be able to tell us for any natural number whether it is a member of
that set. But if what I’ve argued for is right, then even such a deity wouldn’t be able
to algorithmically decide the validity problem, because there is no algorithm that
the deity could rely on. But since the antecedent of (valid > halt) and (valid > arith)
claims that the validity problem is algorithmically decidable, the metaphysically
possible existence of such a deity wouldn’t pose a threat to my claim that these
counterfactuals are indeed counterpossibles. Of course, given my concession that
such a deity may be metaphysically possible, it may be worried immediately that
the status of these counterfactuals as counterpossibles aren’t significant, for per-
haps we can reinterpret counterfactuals about relative computability as about such
deities. However, things aren’t that simple, as the extended argument in section 4
will show. I’ll argue there that such a reinterpretation and many more like it would
amount to a revision of what relative computability theorists take themselves to be
doing.

But before we move on, let’s state precisely what the present challenge to the
Stalnaker-Lewis approach to counterfactuals is: we have counterfactuals about rel-
ative computability, such as (valid > halt) and (valid > arith) above, some of which
appear to be true and some of which appear to be false, but we also have that these
counterfactuals have metaphysically impossible antecedents. Now, the usual way
of understanding the Stalnaker-Lewis approach to counterfactuals is as follows: a
counterfactual �If φ had been the case, then ψ would have been the case� is true at
a metaphysically possible world w iff all metaphysically possible worlds sufficiently
similar to w where φ is true are such that ψ is true in them as well. Since there
are no metaphysically possible worlds where the validity problem is algorithmically
decidable, any counterfactual that starts with ‘If the validity problem were algo-
rithmically decidable . . . ’ is vacuously true. Given that with (valid > arith) we have
such a counterfactual that appears to be false, we seem to have a counterexample
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to the semantics just sketched. And not just that: given that (valid > halt) appears
to be true, we also immediately see that we can’t just change the orthodoxy so
that counterpossibles are all false.17 And given that the halting problem and arith-
metical truth are algorithmically decidable at all the same metaphysically possible
worlds—namely none—we also have a counterexample to the part of orthodoxy
that says that taking a counterfactual sentence and replacing any of its subsentences
with a sentence that’s true at all the same metaphysically possible worlds yields a
necessarily equivalent sentence.

I said that (valid > arith) appears to be false and that (valid > halt) appears to be
true. In the next two sections, I argue that these appearances aren’t deceiving: we
ought to understand counterfactuals about relative computability literally; in fact,
they play an ineliminable role in the definition of the reducibility relation.

3. Philosophical Humility

Researchers in relative computability theory are authorities on the reducibility rela-
tion. However, they are generally not experts on the semantics of counterfactuals.18

So the mere fact that they are disposed to assert some counterfactuals about rela-
tive computability and deny others doesn’t indefeasibly undermine the orthodoxy
about counterfactuals. On the face of it, this fact is simply another piece of evi-
dence that needs to be weighed against the considerations that speak in favor of
the orthodoxy, to be filed away with the well-known fact that ordinary speakers are
disposed to assert some ordinary counterpossibles and deny others. Perhaps we can
hold on to the orthodoxy and excuse relative computability theorists’ dispositions
by appealing to similar considerations with which we may excuse the dispositions
of ordinary speakers. Timothy Williamson (2015, §4), for example, develops an er-
ror theory about the dispositions of ordinary speakers. So perhaps we can simply
co-opt Williamson’s error theory and conclude that counterfactuals about relative
computability pose no threat to the orthodoxy, especially in light of the consider-
able theoretical pressures to hold on to the orthodoxy, also discussed by Williamson
(2015, §2).

However, I am going to argue now and in the next section that this response on
behalf of the orthodoxy runs counter to a certain kind of philosophical humility.
This philosophical humility says that whenever an established mathematical or
scientific discipline purports to study a certain phenomenon, we shouldn’t give
in to philosophical considerations that suggest that there is no such phenomenon
to be studied.19 Relative computability theory, which is certainly an established
mathematical discipline, purports to study the reducibility relation. In the previous
section, I mentioned that a way of understanding the claim that A is reducible to
B is as saying that A would be algorithmically decidable if B were algorithmically
decidable. I now want to argue that this is the way of understanding the reducibility
relation. If that’s right, and if the orthodoxy about counterfactuals is correct, then
the reducibility relation holds between any two algorithmically undecidable sets.
It would also mean that A isn’t reducible to B iff B is algorithmically decidable
and A isn’t. But then the reducibility relation would carve out the same distinction
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among sets of natural numbers that the property of algorithmic decidability does.
The study of the reducibility relation would thus become nothing other than the
study of algorithmic decidability, and so relative computability theory is robbed of
its own subject matter. In light of this fact, philosophical humility recommends that
we reject the vacuity thesis.

Some might argue that philosophical humility should be understood slightly
differently. The philosophy of mathematics that emerges from Stephen Yablo’s
Aboutness (2014, esp. §5.3) is a case in point. Astronomers study, among other
things, the number of planets. However, nominalists think that numbers don’t exist.
So nominalism threatens to rob astronomy of one of its subjects. Yablo, who is a
nominalist, agrees that astronomers speak falsely when they say that the number of
planets in our solar system is eight. However, Yablo thinks that these astronomers
nonetheless speak correctly, because what they say is partially, and non-vacuously,
true—it has a true part, the part that is about the concrete world. Thus, with
Yablo’s theory of partial truth, we can hold on to a kind of philosophical humility,
diminished though it may be, in allowing that that there is a phenomenon that
astronomers study: how things stand concretely with the planets. Likewise, perhaps
we can extract some non-vacuous core from the claim that A would be algorith-
mically decidable if B were algorithmically decidable, even when A and B are both
algorithmically undecidable. This core would then be the proper phenomenon that
relative computability theorists study.

Unfortunately though, Yablo’s theory doesn’t help in rescuing the orthodoxy
about counterfactuals. In order for this theory to yield the result that it’s partially
true that the number of planets is eight, Yablo needs there to be a possible world
where the astronomers’ statement is fully true, i.e. a world where numbers exist.
Now, think about how we would develop a Yablovian theory of counterfactuals
about relative computability. We would say that the statement (valid > halt) is vac-
uously true, but its assertion is correct, perhaps because it has a non-vacuously true
part that talks about certain structural relationships between the validity problem
and the halting problem. But now if we wanted to follow Yablo’s theory of partial
truth, we would need there to be a possible world where the statement is fully true,
and non-vacuously so. In such a world, we would need there to be a possible world
where the validity problem is algorithmically decidable. So it looks like our Yablo-
vian theory would require the claim that the validity problem is algorithmically
decidable to be possibly possibly true. Now, it’s true that unless we help ourselves
to the characteristic axiom of the modal logic S4, ‘possibly, possibly, the validity
problem is algorithmically decidable’ isn’t quite the same as ‘possibly, the validity
problem is algorithmically decidable.’ But it also isn’t so far removed from it that
we can be said to have made genuine progress on behalf of the orthodox approach
to counterfactuals. What’s more, both Stalnaker and Lewis as well as the the model
theory I will present later validate the S4 axiom.

In sum, philosophical humility does indeed recommend that we reject the or-
thodoxy about counterfactuals, on the assumption that the counterfactual way of
understanding the reducibility relation is indeed the way of understanding it. I now
turn to a defense of this latter claim.
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4. Understanding and Misunderstanding Reducibility

An immediate reason for thinking that the counterfactual way of understanding
the reducibility relation is indeed the way of understanding it is that that’s exactly
how Davis, Rogers, and Enderton characterize the relation in our quotes above
(see pages 2–3). But of course, this needn’t be decisive. Perhaps we want to say
that when relative computability theorists assert (valid > halt), what they’re really
doing is . Let’s look at seven proposals of how to fill in this blank. The
first five are instances of quite general proposals of how to respond to purported
counterexamples to the vacuity thesis whereas the final two are specific proposals
about our counterfactuals about relative computability. I will argue that none of
these proposals work. This suggests that when relative computability theorists as-
sert (valid > halt), they really mean it, which in turn suggests that the reducibility
relation is indeed to be understood in terms of counterfactuals.

Idioms. Here’s a proposal for filling in the blank above: when relative com-
putability theorists assert (valid > halt), what they’re really doing is assert that
the halting problem is reducible to the validity problem; the counterfactual locu-
tion (valid > halt) and its variants in the quotes from Davis, Rogers, and Enderton
are merely idiomatic ways of gesturing towards the notion of reducibility. Perhaps
the counterfactual locution is particularly evocative of some of the ideas behind
the notion of reducibility, but sentences such as (valid > arith) aren’t to be taken
literally.

However, counterfactuals about relative computability don’t behave linguistically
the way idioms do. In general, idioms, though syntactically complex, are not se-
mantically complex. Take the idiom ‘to keep an eye out for.’ While the sentence ‘I’m
keeping an eye out for you’ is perfectly linguistically appropriate, its cleft analogue
‘It’s an eye that I’m keeping out for you’ strikes us as odd. This despite the fact that
with non-idiomatic expressions, a cleft sentence is very close in meaning to its non-
cleft variant; viz. ‘I gave her an umbrella’ and ‘It’s an umbrella that I gave her.’ The
reason for this is that the meaning of ‘to keep an eye out for,’ unlike the meaning
of ‘to give an umbrella to,’ is not derived compositionally from the meanings of its
parts. Rather, its meaning is directly lexically encoded by the whole expression. This
means that, on the level of semantics, ‘to keep an eye out for’ is a single unit that
can’t be broken up by, say, cleft constructions. In contrast, counterfactuals about
relative computability interact with other sentence constructions just like ordinary
counterfactuals do. For example, not only is (valid > arith) false, but the following
where we add a negation is true:

(valid > arith) (Even) if the validity problem were algorithmically decidable,
arithmetical truth would (still) not be algorithmically decidable.20

We will see more examples of how these counterfactuals interact with quantifiers
and conjunction shortly. From this, it emerges that the compositional behavior of
counterfactuals about relative computability is just like that of ordinary counter-
factuals, so that they can’t be merely idiomatic ways of speaking.
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Glosses. A related option would be to treat the counterfactuals used by relative
computability theorists as imperfect glosses or paraphrases of claims about re-
ducibility. It may be thought that the case is analogous to the case of causation.21

When asked to explain what we mean by ‘causation,’ we make free use of coun-
terfactual locutions. But, so the proposal goes, the failure of the program of an-
alyzing causation in terms of counterfactuals should teach us that we shouldn’t
take counterfactual locutions as they appear in writings on relative computability
too seriously. So, on this proposal, counterfactuals don’t characterize or define the
reducibility relation, they merely illuminate it.

There are two problems with this analogy with causation. First, the problem
with counterfactual analyses of causation is that they notoriously either over- or
undergenerate cases of genuine causation. Things are different in the case of relative
computability. If we bracket the violations of the vacuity thesis—which it is fair
to bracket, since the status of the vacuity thesis is the very thing that’s at issue—
counterfactual glosses on the notion of reducibility seem to get things exactly right.

Secondly, we seem to have an understanding of causation that’s independent of
our understanding of counterfactuals. In fact, several authors have recently argued
that we should give a semantics for counterfactuals in terms of causal models, the
latter of which treat causation as a primitive notion.22 In contrast, it’s implausible
that the notion of reducibility that’s at the core of relative computability theory is
primitive. We simply don’t have a pretheoretical notion of reducibility that’s not
understood by way of some auxiliary notions. My present claim is that reducibility is
understood in terms of counterfactuals, and that some of these counterfactuals are
counterpossibles. It would be entirely mysterious how such an understanding could
be achieved if the vacuity thesis were correct. Of course, whether my claim about
how we understand reducibility is true will in part depend on whether there are
ways of understanding the reducibility relation that don’t involve counterpossibles.
I will discuss some potential definitions presently.

Conceptual possibility. One tempting response to counterpossibles that appear to
be non-trivial is to interpret them as talking about what’s conceptually possible. The
notion of conceptual possibility is a famously fraught one, since it is tied to the
notions of apriority and analyticity. φ is sometimes said to be epistemically possible
iff �¬φ� isn’t knowable a priori, and sometimes it’s said that φ is epistemically
possible iff �¬φ� isn’t true in virtue of meaning. We needn’t be concerned with
the details here. Let’s just grant that there is a notion of conceptual possibility
according to which it’s conceptually possible that water is an element and that
Ms. Marvel, the heroine of the eponymous comic book series, isn’t Kamala Khan.
A conceptually possible world can then be defined as a maximal consistent set
of sentences that includes all a priori knowable or analytic truths.23 Conceptually
possible worlds may be used to give a model theory for counterfactuals such as the
following:

(water) If water had been an element, then water splitting would have been
impossible.
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(marvel) If Ms. Marvel hadn’t been Kamala Khan, we would have seen them
together at some point or another.

Since the sentences ‘Water isn’t an element’ and ‘Ms. Marvel is Kamala Khan,’
though true, are neither a priori knowable nor analytic, there will be conceptually
possible worlds where the antecedents of (water) and (marvel) are true. Note that
it’s crucial for this general strategy to be promising that the building blocks out of
which we construct the worlds are sentences, or perhaps Fregean senses, and not
something more worldly such as Russellian propositions. The Russellian proposition
corresponding to ‘Ms. Marvel is Kamala Khan’ is the same as the Russellian
proposition corresponding to the logical truth ‘Ms. Marvel is Ms. Marvel,’ and so
there isn’t any consistent set of Russellian propositions that contains the Russellian
proposition corresponding to ‘Ms. Marvel is Kamala Khan.’24

Given the promise of conceptually possible worlds constructed out of sentences
in giving a model theory for (water) and (marvel), it’s tempting to also use them to
give a model theory for counterfactuals about relative computability. After all, it’s
plausible that it’s conceptually possible that the validity problem is algorithmically
decidable.25 However, conceptual possibility notoriously run into difficulties when it
comes to quantifying-in.26 Indeed, it is commonly assumed that it is illegitimate to
quantify into sentential contexts that involve conceptual possibility. But now note
that there are certain results about relative computability that require quantifying-
in when we express them using counterfactuals. Take Gerald Sacks’ (1964) Density
Theorem. It states that the Turing reducibility relation is dense.27 Where A ≤T B
says that A is Turing reducible to B and A<T B says that A ≤T B and B �T A,
this theorem can be expressed as follows: for any two sets A, B, if A<T B, there is
a set C such that A<T C <T B. Using the Post-Turing thesis, we can express this
theorem as follows:

(sacks) For any A, B, if it’s the case that A would be computable if B were
computable but not vice versa, then there’s some C such that: A would be
computable if C were computable but not vice versa and C would be com-
putable if B were computable but not vice versa.

So we see that quantifying-in is very natural for counterfactuals about relative
computability. This sets these counterfactuals apart from the kinds of examples
commonly discussed in the literature on counterpossibles.28

Note that the present claim isn’t that the fact that sentences such as (sacks) in-
volve quantification into counterfactuals prohibits the use of any world-like entities
in their analysis. In fact, the model theory I will present later also involves world-like
entities. The present claim is just that the presence, and indeed indispensability, of
quantifying-in in some counterfactuals about relative computability calls for more
elaborate resources than just conceptually possible worlds qua maximal consistent
sets of sentences.

Semantic ascent. Perhaps counterfactuals about relative computability are best
understood as making meta-linguistic remarks about the predicate ‘algorithmically
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decidable’: (valid > halt) says that if the extension of ‘algorithmically decidable’
had included the validity problem, then it would also have included the halting
problem. In discussing a proposal like this, Berit Brogaard and Joe Salerno (2013)
assert that they ‘highly doubt that there is an elegant and convincing pragmatic
story to be told’ about why we would ascend semantically in such a way (p. 645).
Contrary to this, I submit that we can tell at least a partial story using Stalnaker’s
(1978) apparatus of diagonalization. Without going into too many details, this
apparatus could be extended quite straightforwardly to predict that counterfactuals
with impossible antecedents receive a non-standard reading on which they make
meta-linguistic remarks such as the above.29

Nevertheless, this story would remain incomplete. Suppose for simplicity that
we give a simple Stalnakerian semantics for the reinterpreted counterfactual: the
closest world where the extension of ‘algorithmically decidable’ includes the validity
problem is such that at that world, the extension also includes the halting prob-
lem. We may ask why this would be so. Surely, the extension of ‘algorithmically
decidable’ could have differed in all sorts of ways. For example, the minimal way
of changing the extension so as to include the validity problem would be to just
add the validity problem and nothing else. Surely, it isn’t a brute fact about the
predicate ‘algorithmically decidable’ that this minimal change isn’t what happens at
the closest world. The reason as to why this minimal change is ruled out must lie in
the fact that the halting problem is reducible to the validity problem. But now we’re
taking the notion of reducibility as more basic than the counterfactuals in terms of
which we had originally defined that notion. So now it looks like the best we can do
to explain why the closest world where the extension of ‘algorithmically decidable’
includes the validity problem is such that the extension also includes the halting
problem is by appealing to the truth of (valid > halt). This suggests that we have a
better grip on the literal interpretation of (valid > halt) than on its meta-linguistic
reinterpretation.

The reductio analogy. Maybe we can understand counterfactuals about relative
computability along the lines of counterfactuals found in informal reductio proofs.30

Consider Euclid’s proof that there are infinitely many primes. We start by supposing
that there are exactly n many primes. Let p1, . . . , pn be them. It follows that there
will be a prime p that divides p1 × . . .× pn + 1. The crucial next step in the proof
can then be put in counterfactual terms:

(euclid) If p were one of p1, . . . , pn , then p would divide (p1 × · · · × pn + 1)
− p1 × · · · × pn.

Since nothing divides (p1 × · · · × pn + 1) − p1 × · · · × pn = 1, we conclude by
modus tollens that p isn’t one of p1, . . . , pn , and so that p1, . . . , pn aren’t all of
the primes after all. Now, there is some debate over whether counterfactuals such
as (euclid) pose a serious challenge to the standard approach to counterfactuals.31

Suppose they don’t. And suppose that counterfactuals such as (euclid) are best
understood either as material conditionals or as strict conditionals. This may be
particularly plausible in cases where the material conditional is a logical truth,
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for in that case a normal modal logic proves the corresponding strict conditional,
and both Stalnaker’s and Lewis’ counterfactual logics then prove the correspond-
ing counterfactual. In any case, whatever the details of the story may be that
we tell about (euclid), the present proposal on behalf of the orthodoxy suggests
that we treat counterfactuals about relative computability along the same lines.
(valid > halt) and (valid > arith), the proposal goes, are merely disguised material
or strict conditionals.

The problem with this proposal is that counterfactuals about relative computabil-
ity don’t behave like material or strict conditionals. The reason why Stalnaker and
Lewis developed their model theory for counterfactuals is that natural language
counterfactuals fail to conform to antecedent strengthening, which is valid for
material and strict conditionals. Focusing on the case of strict conditional, this
principle reads:

�
(
φ → ψ

)

�
(
(φ ∧ χ ) → ψ

)

This rule seems adequate for (euclid). No matter what else we put in its antecedent to
strengthen it, the resulting sentence still seems true, though perhaps misleading.32

However, there are counterexamples to antecedent strengthening in the case of
counterfactuals about relative computability. Consider:

(valid > arith) (Even) if the validity problem were algorithmically decidable,
arithmetical truth would (still) not be algorithmically decidable.
(valid & arith > arith) (Even) if the validity problem and arithmetical truth
were algorithmically decidable, arithmetical truth would (still) not be algo-
rithmically decidable.

On the strict conditional interpretation, the inference from (valid > arith) to
(valid & arith > arith) is an instance of antecedent strengthening. But (valid > arith)
is true and (valid & arith > arith) is false.

In response, it may be suggested that the negation in (valid > arith) and
(valid & arith > arith) is a wide-scope negation so that (valid > arith) and
(valid & arith > arith) become ‘¬�

(
V → A

)
’ and ‘¬�

(
(V ∧ A) → A

)
’ respectively.

Perhaps some story can be told according to which the added ‘even’ and ‘still,’
which make (valid > arith) and (valid & arith > arith) sound more natural, force
such a wide-scope interpretation.33 On this regimentation, the inference from
(valid > arith) to (valid & arith > arith) isn’t an instance of antecedent strength-
ening anymore.

However, this response won’t work in full generality. For consider:

(valid > halt & arith) If the validity problem were algorithmically decidable,
then the halting problem would be algorithmically decidable but arithmetical
truth would (still) not be algorithmically decidable.

(valid & arith > halt & arith) If the validity problem and arithmetical
truth were algorithmically decidable, then the halting problem would be
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algorithmically decidable but arithmetical truth would (still) not be algo-
rithmically decidable.

As before, (valid > halt & arith) is true but (valid & arith > halt & arith) is false. But
here, there is no temptation whatsoever to treat the negation embedded within the
consequent as taking wide scope over the whole counterfactual.

What’s more, there are even counterexamples to the claim that a negation that
appears unembedded in the consequent of a counterfactual should always be read as
taking wide scope. It follows from Corollary 1 in §2.2 of Kleene and Post (1954) that
there are sets of natural numbers A and B neither of which is reducible simpliciter
to the other. This means that we should be inclined to reject the following:

(A ∨ B > B) If A or B were algorithmically decidable, then B wouldn’t be
algorithmically decidable.

But now if it were mandatory to read the negation in (A ∨ B > B) as taking wide
scope, we should expect to accept the following:

(A ∨ B > B) If A or B were algorithmically decidable, then B would be algo-
rithmically decidable.

In fact, however, we should reject (A ∨ B > B) for the same reason that leads us to
reject (A ∨ B > B).34

In short, the claim that counterfactuals about relative computability are material
or strict conditionals is untenable.35

The primacy of oracles. Here’s a proposal on behalf of the orthodoxy that exploits
the particulars of what these counterfactuals are about. The proposal is that, for
example, (valid > halt) is merely shorthand for saying that if we had an oracle for
the validity problem, then we could figure out the right answer to any question
we may ask about the halting problem.36 This proposal is inspired by the way we
study relative computability, namely by way of oracle Turing machines. What may
further motivate this proposal is the thought that there isn’t a clear phenomenon,
relative computability, that we have a grasp of independently of studying it with
oracle Turing machines. Perhaps all we have in relative computability theory is a
mathematically rich and thus mathematically interesting structure that doesn’t cor-
respond to anything non-mathematical. Don’t we all know that mathematicians can
become interested in just about any arcane phenomenon as long as it gives rise to a
mathematically interesting structure? What’s more, understanding counterfactuals
such as the above as merely shorthand for saying that we had an oracle for the
validity problem would make its antecedent metaphysically possible. For certainly,
the proposal continues, though perhaps nomically impossible, oracles by themselves
surely aren’t metaphysically impossible. Perhaps there could have popped up out of
nowhere an oracle that intuits facts about the validity problem. In fact, look back
at the quotes from Davis and Enderton (see pages 2 and 3). Davis’ counterfactual
begins with ‘If we could solve P . . .’ and Enderton’s begins with ‘If, hypothetically
speaking, we could somehow decide membership in B . . .’ Regarding the quote
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from Davis, I said that to solve a problem just is to algorithmically decide it. Per-
haps I was too quick here. Perhaps Davis has in mind a more general notion of
solving, and Enderton has in mind a more general notion of deciding, one that
allows reference to metaphysically possible oracles that pop up out of nowhere. A
more sober rendition of the present proposal is the following:

(info) When relative computability theorists assert (valid > halt), what they’re
really doing is assert that there is an algorithm that would allow us to de-
cide which natural numbers are members of the halting problem if we were
given complete information about which natural numbers are members of the
validity problem.37

Just like oracles are metaphysically possible, it’s metaphysically possible to be given
complete information about which natural numbers are members of the validity
problem.

The claim that there isn’t any phenomenon to be studied that we understand
independently of the notion of an oracle Turing machine runs directly counter to
how Rogers develops subject in his book. In chapter 8, Rogers describes a relation
of ‘reducibility’ (the scare quotes are Rogers’) among sets that is similar to Turing
reducibility, called truth-table reducibility, but which is not defined in terms of ora-
cle Turing machines. After describing truth-table reducibility, Rogers argues for the
need for the stronger relation of Turing reducibility in chapter 9, which of course
is defined in terms of oracle Turing machines. His argument goes as follows. He
produces two sets, the first of which he argues is reducible to the second. He then
shows that the first set isn’t truth-table reducible to the second, but that it is Turing
reducible to it. Rogers concludes that using truth-table reducibility to analyze what
he explicitly calls the intuitive notion of reducibility would be inadequate, for this
would leave out certain sets, and that an analysis in terms of Turing reducibility
fares better. To arrive at this verdict, Rogers clearly assumes that he and his readers
have an understanding of the notion of reducibility that’s independent of talk about
oracle Turing machines. And the understanding of reducibility that Rogers provides
is in terms of counterfactuals. In fact, looking back at his quote reveals that it’s
more difficult to read Rogers in such a way that he’s talking about something meta-
physically possible. For Rogers’ (syntactically non-standard) counterfactual begins
with ‘given any method for calculating [the characteristic function of B]. . .’ And
simply being given information doesn’t involve any calculating; after all, calculating
the validity problem is metaphysically impossible.

Note that the present claim isn’t that Rogers assumes that his use of counter-
possibles allows himself and his readers to gain an explicit knowledge of the full
extension of the relation of reducibility and that he then holds up this extension
against the extension of Turing reducibility. Rather, the claim is that Rogers assumes
that his use of counterfactuals allows himself and his readers to have an implicit
grasp of the notion of reducibility. It may well be, and in fact it is quite plausible,
that to pin down the exact boundaries of the extension of the relation of reducibility,
the notion of Turing reducibility, which allows for a precise mathematical analysis,
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is indispensable. But to admit this is consistent with claiming that counterpossibles
are essential in pinning down the subject matter of relative computability theory.38

Regarding the analysis of reducibility in terms of (info), I don’t deny that this
analysis succeeds, just like I don’t deny that the analysis of reducibility simpliciter in
terms of Turing reducibility succeeds. However, (info) crucially appeals to the notion
of a relative algorithm, i.e. an algorithm that is given complete information about
a certain set of natural numbers. While working relative computability theorists of
course have a grasp of this notion, the fact that Rogers sees the need to introduce
the notion of reducibility in terms of counterpossibles that don’t appeal to the
notion of a relative algorithm suggests that the conceptual building blocks that
are required for an understanding of relative computability theory are the notion
of a non-relative algorithm on the one hand and counterfactuals on the other.
But these building blocks only succeed in facilitating an understanding of relative
computability theory if the vacuity thesis is false.

That Rogers assumes that he and his readers come to have an understanding
of reducibility by way of his use of counterpossibles may be dismissed if Rogers
were a minor figure in relative computability theory and if his readers were few.
However, from its initial release in 1967 until at least the release of Robert Soare’s
(1986) textbook, Rogers’ book was the main textbook with the help of which a
whole generation of mathematicians was raised.

The primacy of hypercomputers. Another topic specific proposal suggests that the
study of relative computability is the study of metaphysically possible hypercom-
puters. Hypercomputers are hypothesized machines that overcome the finiteness of
actual computers in one way or another. Many such machines have been described
in the literature.39 One is a so called accelerating Turing machine, also called Zeus
machine.40 This is a machine that completes an infinite number of computational
steps in a finite amount of time. One way it could do this is by completing a su-
pertask, e.g. by completing the first computational step in one minute, the second
step in half a minute, the third step in fifteen seconds, and so on. In other words,
the machine completes each computational step after the first one in half the time
it took to complete the previous one. After two minutes have passed, the machine
will have completed an infinite number of steps. There’s some debate about whether
accelerating Turing machines and the supertasks that they require are physically
possible.41 But they surely seem to be metaphysically possible.42 Now, accelerating
Turing machines could ‘decide’ the validity problem. That’s because that set, though
algorithmically undecidable, is computably enumerable. This means that the set of
predicate logic validities is such that a Turing machine, given an infinite amount of
time, could list all of its members. Consequently, an accelerating Turing machine
of the sort described above could list all and only the members of that set in two
minutes. In order to decide in a finite amount of time whether a sentence of the
predicate calculus is logically valid, this machine would then just have to generate
the list and determine whether the sentence appears on it or not.

So perhaps talk about relative computability could be cashed out in terms of
talk about hypercomputers: a set A is reducible to a set B iff: if the laws of nature
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allowed for a hypercomputer that could decide membership in B, then the laws
would also allow for a hypercomputer that could decide membership in A. The
only modalities involved here are metaphysical.

However, this proposal makes false predictions. It predicts that there will be true
counterfactuals of the form,

(A ≤hyper B) If the laws of nature would allow for a hypercomputer that could
decide membership in B, then the laws would also allow for a hypercomputer
that could decide membership in A,

even though the corresponding claim about Turing reducibility,

(A ≤T B) A is Turing reducible to B,

is false. To see this, note that there are some algorithmically undecidable but com-
putably enumerable sets A and B that are such that it’s neither the case that A is
reducible to B nor vice versa.43 Since A is computably enumerable, a Zeus machine
could ‘decide’ A. But presumably if the laws of nature allowed for there to be a
Zeus machine that could ‘decide’ A, then they would also allow for there to be a
Zeus machine that could ‘decide’ B, since B is computably enumerable as well. In
other words, if we had a hypercomputer to decide membership in A, then we could
also have a hypercomputer to decide membership in B. Consequently, (A ≤hyper B)
is true, even though (A ≤T B) is false. So the explanation of claims involving the
Turing reducibility relation, and in turn of relative computability, in terms of what
a Zeus machine could do yields the wrong results. And in fact, according to the
theory of supertask computation as developed by Joel David Hamkins (2004) and
Philip Welch (2004), Zeus machines are vastly more powerful than many oracle
machines.44

The failure of these seven proposals suggests that the reducibility relation is in-
deed to be understood in terms of counterpossibles. This means that the orthodoxy
about counterfactuals does indeed rob relative computability theory of its subject.
Philosophical humility thus recommends that we reject the orthodoxy. But perhaps
we think that philosophical humility has its limits. Perhaps we want to dig in our
heels and insist that counterfactuals such as (valid > halt) and (valid > arith) are
indeed both true. This attitude owes us a story as to why these counterfactuals
strike us as prima facie non-vacuous. We can take a cue from Williamson’s (2015)
discussion here.45

The following is a version of an argument of Williamson’s that purports to put
pressure on our inclination to treat (valid > arith) as false using general principles
of the logic of counterfactuals. The argument, which is adapted for our purposes,
starts by claiming that (valid > arith) is equivalent to (valid & valid > arith):

(valid & valid > arith) If the validity problem were and weren’t algorithmically
decidable, then arithmetical truth would be algorithmically decidable.

Why should this equivalence hold? It’s metaphysically necessary that the valid-
ity problem isn’t algorithmically decidable. And since φ is metaphysically equiva-
lent to �φ ∧ ψ� whenever ψ is metaphysically necessary, ‘the validity problem is
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algorithmically decidable’ is metaphysically equivalent to ‘the validity problem is
and isn’t algorithmically decidable.’ In worlds talk, ‘the validity problem is algo-
rithmically decidable’ is true at all the same metaphysically possible worlds as ‘the
validity problem is and isn’t algorithmically decidable.’ Next, it is claimed that
counterfactuals allow for substitution of necessary equivalents; i.e. if φ and ψ are
true at all the same metaphysically possible worlds, then �φ�→χ� and �ψ�→χ�
are equivalent. This gives us the desired equivalence between (valid > arith) and
(valid & valid > arith). Now, surely (valid & valid > arith), with its logically impos-
sible antecedent, is much less obviously false than (valid > arith). So perhaps we
are merely tricked into thinking that (valid > arith) is false because we don’t realize
that it’s equivalent to (valid & valid > arith).

However, a closer look at this argument reveals that it rests on an assumption
that we ought to reject for the same reason that we ought to accept counterfactuals
about relative computability as non-vacuous. Let’s look at how we would derive the
supposed equivalence between (valid > arith) and (valid & valid > arith). Stalnaker’s
(1968, 106) counterfactual logic C2 contains the following axioms:

(a3) �(φ → ψ) → (φ�→ψ)

(a7)
(
(φ�→ψ) ∧ (ψ�→φ)

) → (
(φ�→χ ) ↔ (ψ�→χ )

)

Now, since it’s metaphysically necessary that the validity problem isn’t algorithmi-
cally decidable, we have:

�
(

V ↔ (V ∧ ¬V)
)

Using (a3), this gives us:
(

V�→(V ∧ ¬V)
)

and
(

(V ∧ ¬V)�→V
)

And so (a7) gives us:
(

V�→A
)

↔
(

(V ∧ ¬V)�→A
)

That (a3) gives us ‘V�→(V ∧ ¬V)’ is suspicious. For it follows from this that any
counterfactual that assumes in its antecedent that the validity problem is algorith-
mically decidable is vacuous. And whether that’s the case is exactly what’s at issue.
So if ‘�’ is interpreted as metaphysical necessity, then we ought to reject (a3). In
counterfactual logic, ‘�’ is usually defined such that ��φ� abbreviates �¬φ�→φ�.
That’s how Lewis (1973, §1.5) defines it; he calls ‘�’ outer necessity. (a3) is valid in
the model theory I present in the appendix if that’s how we understand ‘�,’ since
outer necessity is now broader than metaphysical necessity. But if that’s how we
understand ‘�,’ then we can’t accept ‘�

(
V ↔ (V ∧ ¬V)

)
.’ The latter is true only

where ‘�’ is understood as metaphysical necessity. So the logic of counterfactuals



548 NOÛS

doesn’t force upon us the equivalence of (valid > arith) and (valid & valid > arith).
And without this equivalence, it becomes less plausible that we are tricked into
thinking that (valid > arith) is false. Note that given this notion of outer necessity,
the debate over the vacuity thesis can be rephrased as follows: is outer necessity the
same as metaphysical necessity? Stalnaker, Lewis, and Williamson think that it is,
whereas I argue that outer necessity is stronger than metaphysical necessity.

A final way of holding on to the orthodoxy is to argue that despite its shortcom-
ings, it’s the only game in town, since all alternative approaches such as for example
that of Brogaard and Salerno (2013) run into serious trouble. And indeed, perhaps
there’s a way of amending the orthodoxy by providing an error theory about our
judgments about counterpossibles. Williamson (2015, §4), for example, proposes
that we use certain heuristics when evaluating counterfactuals that lead us astray in
cases of counterpossibles. However, in the next section, I describe a model theory
for counterfactuals about relative computability, which I describe in more detail in
the appendix, which I hope demonstrates that the orthodoxy isn’t the only game in
town.

5. Patching Up the Orthodoxy

Williamson likens the supposed folly of rejecting the vacuity thesis to the Aris-
totelian rejection of vacuously true universal generalizations:

The logic of quantifiers was confused and retarded for centuries by unwillingness
to recognize vacuously true universal generalizations; we should not allow the logic
of counterfactuals to be similarly confused by unwillingness to recognize vacuously
true counterpossibles. (Williamson 2007, 175)

Given the fact that the standard model theory of counterfactuals treats counter-
factuals as universal quantifiers over worlds, Williamson’s analogy is of course
particularly apt. Do we risk entering a kind of logical Dark Age if we accept that
counterfactuals such as (valid > halt) and (valid > arith) are non-vacuous? Fortu-
nately, there is no such risk. On the model theory for counterfactuals about relative
computability presented in the appendix, these counterfactuals are still universal
quantifiers over indices and they still admit of vacuously true instances. In fact,
the model theory is of a piece with Lewis’ similarity models; it incorporates a ver-
sion of the vacuity thesis insofar as it treats counterfactuals with outright logical
falsehoods in the antecedents as vacuously true.

The basic idea of the model theory is simple. Relative computability theory
provides us with an abstract structure called the Turing degrees. Informally, we can
say that this structure classifies sets of natural numbers into complexity classes. The
halting problem and the validity problem belong to the same complexity class, which
is why (valid > halt) and its converse are true, but arithmetical truth belongs to class
of problems of much higher complexity, which is why (valid > arith) is false. The
Turing degrees form a hierarchy that has the form of an infinite tree originating from
a single point.46 This point of origin is the class of least complex sets, i.e. the sets that
are in fact computable. For example, the set ω of all natural numbers belongs to this
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class, since we can easily come up with an algorithm for deciding it: for any number
n, to decide whether n is in ω, compute nothing and output ‘yes.’ Another way
of thinking of this least class is that it represents something like the actual world:
everything that’s actually algorithmically decidable is represented by this class as
algorithmically decidable. This is the class where the Church-Turing holds and so
where the laws of computation are as they actually are. So it’s tempting to just have
the Turing degrees play the role of worlds, where all of the Turing degrees except
for the one that stands for the actual one are thought of as non-actual worlds where
the laws of computation are different. The further you move up the tree, the more
violations of the Church-Turing thesis you get, since more and more sets that aren’t
actually algorithmically decidable become represented as algorithmically decidable.
This tree-like structure gives us everything we need for Lewis’ comparative similarity
semantics for the counterfactual connective. Unfortunately, this isn’t quite right, for
reasons explained in the appendix. What we need for our worlds are rather ideals
on Turing degrees. The ideals still form a tree-like structure on which we can
build Lewis’ comparative similarity semantics. A simple counterfactual �If B were
algorithmically decidable, then A would be algorithmically decidable� is true at a
world w (i.e. an ideal on Turing degrees) iff all worlds closest to w that represent
B as algorithmically decidable also represent A as algorithmically decidable.47 We
can turn this into a fully general semantics for the counterfactual connective by
incorporating the standard semantic clauses for the Boolean connectives and the
quantifiers. As long as the semantic clauses for the connectives are classical, �(φ ∧
¬φ)�→ψ� comes out vacuously true, for any ψ , since there’s no world where
�φ ∧ ¬φ� is true. Again, for more details, see the appendix, and for a complete
axiomatization of a propositional fragment of what I call the conditional logic of
Turing reducibility, see Jenny (MS).

Let’s take stock. Not only do we have positive reasons for interpreting coun-
terfactuals about relative computability literally, as seen in the previous section,
but we can also see now that nothing stands in the way of extending Lewis’ sim-
ilarity models to give a model theory for these counterfactuals. The resulting the-
ory doesn’t have us falling back into a logical Dark Age that Williamson has
warned us of. Our job isn’t done, however. One big remaining question is how
to interpret our model theory. Even though the ideals on Turing degrees in the
model theory just sketched act like worlds as far as the model theory is concerned,
they are of course a very different kind of object than what we usually think of
when we think of worlds, possible or impossible. I take up this issue in the next
section.

6. Interpreting the Indices

The reason why the ideals on Turing degrees, which are just sets of sets of sets
of natural numbers, act like worlds as far as the above model theory is concerned
says more about the model theory than about the ideals. As is well known, so-
called ‘possible worlds’ model theory doesn’t presuppose any kind of realism about
possible worlds. As a piece of mathematics, the model theory doesn’t care what the
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‘worlds’ are that we use. These worlds are just indices at which we evaluate sentences.
So there’s nothing mysterious about the fact that ideals on Turing degrees can act
as indices.

However, we may still ask what possible worlds model theory is for, and depend-
ing on what we think it’s for, we may want to ask some more probing questions
about how to interpret the role of the ideals on Turing degrees in the above model
theory. Of course, it is beyond the scope of this paper to develop a theory of model
theory. But I want to make a few remarks about how my proposed model theory
fits into two alternative pictures of the role of model theory.

On an instrumentalist understanding of possible worlds model theory, possible
worlds models are merely a useful tool to study the logic of the object languages in
question. There’s no doubt that possible worlds model theory has greatly advanced
our understanding of modal and counterfactual logic. But an appreciation of the
usefulness of model theory is consistent with the rejection of any sort of realism
about possible worlds. One form of such instrumentalism is modalism.48 Modalism
claims that the modal operators and counterfactual connectives are in some sense
more basic than the possible worlds used in their model theory. Kit Fine (1977)
explicitly speaks of the construction of possible worlds. So the rough idea is that we
‘construct’ possible worlds using our modal and counterfactual language and then
use them to obtain a more precise understanding of that language. This take on
possible worlds model theory fits particularly well with the way we use the ideals on
Turing degrees in the above model theory. For after all, as described in the appendix,
the ideals on Turing degrees are selected from among the mathematical universe to
play the role of worlds with the help of the Turing reducibility relation. The Turing
reducibility relation in turn corresponds to the relation of reducibility simpliciter, via
the Post-Turing thesis. And as we’ve seen, reducibility simpliciter is best cashed out
in counterfactual talk. So on a modalist-instrumentalist understanding of possible
worlds model theory, there is no puzzle about the role of the ideals on Turing
degrees in our model theory.

There is also a more inflationary understanding of possible worlds model theory,
the representational understanding. The idea here is that there is a privileged possi-
ble worlds model, the one that corresponds to the semantics of our language, and
that model captures the truth conditions of our sentences.49 Such a representational
understanding of course presupposes a kind of realism about possible worlds. But
that realism needn’t be as strong as Lewis’ (1986); a weaker realism, such as perhaps
Stalnaker’s (2003; 2012), suffices.50 Given such realism, the question how the ideals
on Turing degrees qua indices relate to possible worlds becomes pressing. What-
ever possible worlds are, they surely aren’t sets of sets of sets of natural numbers.
So if we want to give genuine truth conditions for counterfactuals about relative
computability, an appeal to ideals on Turing degrees is bound to be unilluminating.
However, a representational understanding of our model theory may be available.
Suppose there are worlds, possible or otherwise, where the laws of computability
are different from what they actually are. And suppose that for any set that ap-
pears somewhere in the structure of the ideals on Turing degrees, there’s such a
world where that set is algorithmically decidable. Then we can define a partition
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on the set of all of these worlds such that two worlds are in the same cell iff they
agree on the laws of computability. We will then be able to define a model that’s
isomorphic to the model I present in the appendix where the indices are the cells of
the partition. What’s more, the Post-Turing will guarantee that the resulting truth
conditions for sentences such as (valid > halt) and (valid > arith) will be adequate.
And if we want to provide an intended model for a language in which we can
talk about more than just algorithmic decidability, we can take this new model
and extend the comparative similarity relation to the members of the cells of the
partition. This will allow us to assign truth-conditions to counterfactuals whose
component sentences talk both about algorithmic decidability as well as about all
things other than algorithmic decidability. Of course, this may lead us to assign
truth conditions to counterfactuals that involve odd, gerrymandered pairings of
sentences about algorithmic decidability and sentences having nothing whatsoever
to do with algorithmic decidability. But we can of course have counterfactuals with
similarly odd pairings even in the absence of an ability to talk about algorithmic
decidability. Such is the nature of compositionality. Perhaps some such pairings will
lead us to adopt, say, a model theory that allows for truth-value gaps so that we
aren’t required to count every counterpossible as either true or false. But there’s
no reason for thinking that the introduction of an ability to talk about algorithmic
decidability will put any pressure on us to go in for such maneuvers that wasn’t
already there before.

Of course, some will doubt the intelligibility of metaphysically impossible worlds
where the laws of computability are different, given the metaphysical necessity of the
Church-Turing thesis. Echoing Bertrand Russell’s (1905) and W. V. Quine’s (1948)
criticisms of Meinongian ontology, Lewis (1986, 7 n. 3) and Stalnaker (1996) are
suspicious of logically impossible worlds where contradictions hold. They argue
as follows: suppose that there’s an impossible world w at which ‘p’ and ‘¬p’ are
true. Then given that ‘¬p’ is true at w, it’s not the case that ‘p’ is true at w. So
it both is and isn’t the case that ‘p’ is true at w. Contradiction. So w can’t exist.
Whatever the force of this objection may be, it clearly doesn’t apply to the present
use of metaphysically impossible worlds. For none of the worlds required by our
model theory are logically impossible.51 And clearly, a version of the Stalnaker-
Lewis argument against our impossible worlds won’t go through. Essentially, we
are saying that there are worlds where the Church-Turing thesis fails. To get a
contradiction from this, we would need the assumption that the Church-Turing
thesis holds in every world. But all I’ve argued is that the Church-Turing thesis holds
in every metaphysically possible world. More generally, if we’re representationalists
about worlds model theory, then our metaphysically impossible worlds earn their
keep for much the same reason that metaphysically possible worlds earned their
keep: as we saw, they allow us to develop truth conditions for a certain class of
counterfactuals.

We thus see that no matter whether we’re instrumentalists or representationalists
about our model theory, there’s no serious worry about its use of indices that
represent the laws of computation as different from what they actually are.
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7. Conclusion

The case for the vacuity of counterfactuals about relative computability looks fee-
ble. We’ve seen that the reducibility relation, which is the subject of study of relative
computability theory, is to be understood in terms of counterfactuals. These coun-
terfactuals have metaphysically impossible antecedents, and so the vacuity thesis
threatens to undermine a whole mathematical discipline. Philosophical humility
recommends that we revise our theory of counterfactuals before we propose to put
our colleagues in mathematics out of a job.

Some questions still remain, however. First, the representational understanding
of worlds model theory gives rise to general questions about the metaphysics of
worlds, and about whether metaphysically possible worlds are the same kind of
thing as metaphysically impossible worlds. These questions are beyond the scope
of the present paper.

Another question concerns the status of the outer necessity operator that I
briefly discussed at the end of section 4. Is there a theoretically important modality
corresponding to this operator that’s of the same kind as metaphysical necessity,
though more strict? Accepting an ideology of outer necessity would arguably be
the most conservative way of amending the orthodoxy, since it would allow us to
hold on to a version of the vacuity thesis. In fact, if we accept this ideology, then
counterfactuals about relative computability turn out not to be counterpossibles
at all, at least not as far as outer possibility is concerned. Whether the ideology
of outer possibility is worth accepting for this and other reasons will have to be
judged against the same kind of criteria that are used to answer questions about
ideological commitment in general.

Finally, one may wonder how the theory I’ve developed extends to counterpos-
sibles that aren’t about relative computability, such as perhaps (water) and (marvel)
mentioned on pages 10 and 11. I submit that my discussion gives us reason to take
seriously the suggestion, made of course by many in the literature, that there are
other non-vacuous counterpossibles. But I also hope that my discussion has shown
that careful investigation is required to establish that a given counterpossible is
indeed non-vacuous. In particular, since many of the purported counterexamples
to the vacuity thesis mentioned in the literature such as those involving claims
about what would have happened if the laws of metaphysics had failed are about
philosophical topics, an appeal to philosophical humility such as the one I invoke
above may not always be available. What we have here is a classic case where one
philosophical domain, i.e. metaphysics, is in tension with another, i.e. philosoph-
ical semantics. To move beyond the gridlock in the debate over counterpossibles,
we need to look for uses of counterpossibles outside of philosophy. I therefore
suggest that we seek to find established scientific disciplines other than relative
computability theory where counterpossibles play an ineliminable role. It is my
hope that the present study has taken a first step towards such a case-by-case study
of counterpossibles. Once we have a clearer picture of the areas where non-vacuous
counterpossibles are indispensable and once we have model theories for these var-
ious classes of counterpossibles, we may then investigate to what extent we can



Counterpossibles in Science: The Case of Relative Computability 553

integrate these model theories to come up with a unified and fully general theory
of non-vacuous counterpossibles.

Appendix: Model Theory

In this appendix, I describe a model for a quantified language of relative com-
putability with a designated predicate ‘D’ for algorithmic decidability.52

The Turing degree of some set A is deg (A) = {B : A ≤T B and B ≤T A}. We can
define an ordering ≤ on the Turing degrees D so that for a, b Turing degrees, a ≤ b
iff there’s some A ∈ a and some B ∈ b such that A ≤T B. Informally, the Turing
degree of A is its complexity class. I mentioned that it’s tempting to think of Turing
degrees as worlds, where a degree-world would represent a set as decidable iff it
contains that set. However, this would mean, for example, that there is no world
where the decidable sets are all and only the arithmetically definable sets. This
follows from Corollary 1 of §4.4 in Kleene and Post (1954) that there’s no degree
that contains all and only the arithmetical sets, since 0(ω) isn’t a minimal upper
bound to the arithmetical degrees 0, 0′, 0′′, . . ..53 We can avoid this undesirable
result if we use ideals on Turing degrees instead. For any a, b ∈ D and for 0 the
degree of the algorithmically decidable sets, an ideal i on the Turing degrees is a
non-empty set of Turing degrees such that if a, b ∈ i , then their join a ⊕ b is in
i as well; and if a ∈ i and b ≤ a, then b ∈ i . Since the join of two arithmetically
definable Turing degrees is arithmetically definable and since anything reducible to
an arithmetical set is arithmetical, the arithmetical sets form an ideal.

The starting point for our model theory are the frames for Lewis’ (1971; 1973)
comparative similarity models, which consist of a set of indices (worlds) W and a
ternary relation R on W such that for each w ∈ W, Rw is a total binary preordering
on W. vRwu is informally understood as saying that world v is at least as similar
to w as u is to w.54

The structure of the Turing degrees 〈D,≤〉 is very similar to such frames. It is
easily seen that ≤ partially orders D. What is more difficult to see is that ≤ isn’t
total; there are a and b in D such that a � b and b � a. This is Corollary 1 in
§2.2 of Kleene and Post (1954), which we’ve already encountered. But we already
saw that we can’t use D to serve as the set of worlds. Rather, we need to use the
set I of ideals on Turing degrees. This set already comes partially ordered by the
subset relation. But still, a difference between 〈I ,⊆〉 (besides the fact that ⊆ isn’t
total, due to the non-totality of ≤) is that ⊆ is a binary relation whereas Lewis’ R
is ternary. This turns out not to be a problem, however.

For 〈I ,⊆〉 a frame, our model is the tuple M = 〈℘(ω), I ,⊆,I〉, where ℘(ω) is
the power set of the set of natural numbers and I takes ‘D’ to functions from
members of I to subsets of ℘(ω) such that for w ∈ I and x ∈ ℘(ω), x ∈ I (‘D’)(w)
iff for some y ∈ ⋃

w, x ≤T y. For g a function that assigns members of ℘(ω) to
the variables of the language, we then have that ‘Dx’ is satisfied at a world w

iff g(x) ∈ I(‘D’)(w).55 The counterfactual connective ‘�→’ is defined as follows
(where Ww = {v ∈ W : w ⊆ v} and [[φ]]g

M is shorthand for {w ∈ W : [[φ]]g
M,w = 1}):

[[�φ�→ψ�]]g
M,w = 1 iff for all v ∈ Ww ∩ [[φ]]g

M, there is some u ∈ Ww ∩ [[φ]]g
M such
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that u ⊆ v and such that for any ∈ Ww such that t ⊆ u, [[�φ → ψ�]]g
M,t = 1. Note

that this clause for ‘�→,’ which is adapted from Burgess’ (1981), differs from
Lewis’ clause in that it contains an additional initial universal quantifier. This is
required because our partial order isn’t total, whereas Lewis’ comparative similarity
relations are. Note also that our binary partial order can be turned into a ternary
comparative similarity relation in a canonical way: we define the ternary relation
⊆∗ such that j ⊆∗

i k iff i ⊆ j and j ⊆ k. This gives us the frame 〈I ,⊆∗〉, on which
we can build models each of which belongs to (the quantified version of) John
Burgess’ (1981) model class M1. If we then redefine Ww as {v ∈ W : v ⊆w v} and
take over the above clause for ‘�→,’ we immediately get that the ternary version
of our model on 〈I ,⊆∗〉 validates all axioms and rules of Burgess’ (1981) logic S1.
S1 is strictly weaker than Lewis’ (1971) favored counterfactual logic C1, which we
obtain from S1 by adding:56

D′.
((
φ ∨ ψ)

�→¬φ
)

→
((

(φ ∨ χ )�→¬φ) ∨ (
(ψ ∨ χ )�→¬χ))

And of course from C1 we can get Stalnaker’s (1968) logic C2 by adding conditional
excluded middle:

CEM. (φ�→ψ) ∨ (φ�→¬ψ)

Neither D′ nor CEM are valid in M, due to the fact that Corollary 1 in §2.2 of
Kleene and Post (1954) makes ⊆ non-total. Regarding the quantifiers, since these
models have a fixed domain, the Barcan (1946) formula and its converse come out
valid.

Of course, the frame 〈I ,⊆〉 has certain features that not all frames have on which
the models in Burgess’ M0,1 are built. In fact, the structure of the ideals on Turing
degrees is an upper semi-lattice with a zero-element, and it has many other features
that we may wish to capture axiomatically. I provide a complete axiomatization
of a propositional fragment of the conditional logic of Turing reducibility as well
as a decision procedure in Jenny (MS). For the quantificational case, we may
want to enrich our language with a predicate for computable enumerability and
with function signs for the complementation, jump, and join operations on sets of
natural numbers. Whether the structure of the ideals on the Turing degrees can be
completely axiomatized is unknown. What’s important for present purposes is that
with our model M we have what we need to correctly interpret (regimentations
of) our counterfactuals (valid > halt) and (valid > arith) (see page 4), quantified
counterfactuals such as (sacks) (page 11), as well as many more.

Before we can regiment (valid > halt) and (valid > arith), we should expand our
language to include individual constants ‘v,’ ‘h,’ and ‘a’ that I assigns to the
validity problem, the halting problem, and arithmetical truth respectively. Then
(valid > halt) and (valid > arith) become ‘Dv�→Dh’ and ‘Dv�→Da’ respectively.
Given that the degree of both the validity and the halting problem is the degree
0′ and the degree of arithmetical truth is 0(ω) and given that 0′ ≤ 0(ω), ‘Dv�→Dh’
comes out true at the zero-element ‘world’ in M and ‘Dv�→Da’ comes out false,
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as desired. In fact, as long as we have a model on the frame 〈I ,⊆∗〉 that assigns
to the atomic sentences of our language the intended set ideals on Turing degrees,
our model theory gives exactly the results we want. For example, it is routine
to verify that the relevant regimentations of (valid > arith), (valid & arith > arith),
(valid > halt & arith), and (valid & arith > halt & arith) (see page 13) have all the
desired properties in our model. And since the structure of the Turing degrees is
dense, the relevant regimentation of (sacks) is true at any world in our model as
well:

∀x∀y
(
(Dy�→Dx) ∧ ¬(Dx�→Dy)

) →

∃z
(
(Dz�→Dx) ∧ ¬(Dx�→Dz) ∧ (Dy�→Dz) ∧ ¬(Dz�→Dy)

)

Notes
1 See Nolan (1997) and Brogaard and Salerno (2013) for influential papers and Berto (2013, §5.1)

for more references.
2 See again Berto (2013) for an overview of previous proposals.
3 See Baras (MS) for a discussion of Brogaard and Salerno’s (2013) proposal.
4 For the sake of simplicity, I am straining traditional usage a bit here. Traditionally, the decision

problem was so-called because it called for an algorithm for deciding membership in the set containing
the logical validities; it wasn’t the set itself that was called ‘the decision problem.’ See Mancosu and
Zach (2015).

5 See Soare (1996, 2009) for historical overviews of and Soare (2016) for an up-to-date introduction
to the theory of relative computability. I will appeal to facts proven in Soare (2016) throughout here.
Note that Soare (1996) initiated the change in usage from ‘recusion theory’ to ‘(relative) computability
theory.’

6 See Chisholm (1946) and Goodman (1947).
7 See Stalnaker (1968), Stalnaker and Thomason (1970), and Lewis (1971, 1973). See also Todd

(1964) and Sprigge (1970) for early statements of ideas similar to Stalnaker’s and Lewis’.
8 As it happens, the validity problem is also reducible to the halting problem; but the reducibility

relation isn’t in general symmetrical.
9 See Shapiro (1981) and Rescorla (2007) for discussions of different interpretations of the thesis.
10 Of course, talk of such storage devices is purely metaphorical; recall that Turing machines are

abstract objects instead of concrete computing devices. So strictly speaking, an oracle is the abstract
analogue of a concrete storage device.

11 See Soare (2009, 382) and Cooper (2004, 142).
12 See Piccinini (2015, §4.3).
13 I skip over some complications here; see Piccinini (2015, §4) for a more detailed discussion. In

particular, I interpret the Church-Turing thesis as what Piccinini calls the mathematical Church-Turing
thesis; I take this to be historically accurate. Note also that I discuss the issue of hypercomputation in
section 4.

14 McGee (2006, 111), one of the very few discussions of the modal status of algorithmic decidability,
concurs.

15 See Knuth (2016).
16 These considerations also suggest that Cleland’s (1993) thinking about the Church-Turing thesis

is even more revisionary than Cleland herself suggests.
17 See Kment (2014, 25, 220) for a theory that treats all counterfactuals with logically impossible

antecedents as vacuously false.
18 Thanks to Alex Byrne for helpful discussion here.
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19 This attitude is related to Lewis’ (1991, §2.8) Credo about set theory and Shapiro’s (1997, ch. 1)
‘philosophy-last’ approach to philosophy of mathematics.

20 Note that (valid > arith) is only equivalent to the negation of (valid > arith) if we assume con-
ditional excluded middle, which, as we’ll see later, is not in general valid. Note also that I assume that
‘even’ and ‘still’ don’t make any truth-conditional contributions to the counterfactuals in which they
occur, which is why I have put them in parentheses; see Bennett (2003, §§102–7) for a defense of this
assumption.

21 Thanks to Bradford Skow for suggesting this analogy and to Justin Khoo and an anonymous
referee for urging me to give this proposal more serious consideration.

22 See Briggs (2012) and the references therein.
23 I assume here that failures of the laws of logic aren’t conceptually possible. This is a harmless

assumption in the present context since we’re not concerned with counterfactuals with explicit violations
of the laws of logic in the antecedent. See Brogaard and Salerno (2013) for an account along the lines
I’m imagining here that dispenses with this assumption.

24 I am grateful to an anonymous referee for pressing me to be clearer on this.
25 This is assuming, perhaps contrary to Smith (2007, §35), Sieg (2008), and Kripke (2013), that the

Church-Turing thesis isn’t a conceptual truth. If you disagree, then so much the worse for the present
proposal on behalf of the orthodoxy.

26 These difficulties are most famously noted by Quine (1953).
27 Strictly speaking, Sacks shows that the relation on the Turing degrees is dense. That the Turing

reducibility relation is dense is an immediate corollary. For ease of exposition, I’ll put off discussion of
Turing degrees until the next section.

28 For example, Brogaard and Salerno (2013) don’t even tell us how to extend their model theory
to a language with quantifiers.

29 This strategy may also be carried out using Einheuser’s (2012) apparatus.
30 Thanks to Stephen Yablo for pushing me to think harder about this strategy.
31 Nolan (1997, 537–8) doesn’t think so whereas Dutilh Novaes (forthcoming) does. See also

Williamson (2015, §3) for discussion.
32 If you disagree, then so much the worse for the present proposal on behalf of the orthodoxy.
33 Though see endnote 20.
34 It might be worried that we are only inclined to reject (A ∨ B > B) because simplification of

disjunctive antecedents is a valid rule of inference for counterfactuals. This rule reads:

(φ ∨ ψ)�→χ

(φ�→χ ) ∧ (ψ�→χ )

Simplification isn’t valid in Stalnaker’s and Lewis’ logics of counterfactuals, but Fine (1975, 2012),
Ellis et al. (1977), and Santorio (MS) have argued that that’s defect of these logics. But even accepting
simplification doesn’t help in the current situation. For, Kleene and Post’s result also leads us to reject
the following.

(A > B) If A were algorithmically decidable, then B would be algorithmically decidable.

But then by simplififaction, we should also reject (A ∨ B > B). So we should accept the negation of
(A ∨ B > B). But then on the assumption that a negation in the consequent of a counterfactual takes
wide scope, we should accept (A ∨ B > B) as well, contrary to what we just observed.

35 von Fintel (2001) and Gillies (2007) have recently argued that natural language counterfactuals
only dynamically fail to validate antecedent strengthening. Whether they are right is subject to ongoing
debate; see Moss (2012) for criticism. But even if von Fintel and Gillies turn out to be right, their
dynamic semantics is still very different from the static strict conditional treatment that the current
proposal argues is adequate for counterfactuals in reductio proofs. For example, von Fintel and Gillies
need something like a comparative similarity relation to model the evolution of the context, whereas
a static strict conditional treatment only needs an accessibility relation for the modal operators. This
also means, in turn, that if we wish to model counterfactuals about relative computability in a dynamic
framework, we could just borrow the comparative similarity relation of the model theory that I describe
in the appendix.
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36 Agustı́n Rayo suggested this to me in personal communication.
37 Thanks to an anonymous referee for suggesting this formulation.
38 Thanks to an anonymous referee for urging me to be clearer on this.
39 See Davis (2004) and Piccinini (2015, §4.3) for critical discussions and references.
40 See Boolos et al. (2007, 19).
41 See Earman (1995, ch. 4), Davis (2004, 197), and Romero (2014) for discussion.
42 See Shagrir (2004) for an argument that accelerating Turing machines don’t fall prey to Thomson’s

(1954) paradox.
43 We know that such sets exists due to Friedberg (1957) and Muchnik’s (1956) solution to Post’s

(1944) Problem.
44 It may be argued, perhaps with Shapiro (2006), that the informal notion of decidability, and in

turn the informal notion of relative computability, can be precisified in a number of ways, one of which
coincides with the notion of hypercomputers. But this would still leave us with the result that there’s a
notion of relative computability on which counterfactuals about relative computability are non-vacuous
yet have metaphysically impossible antecedents. Thanks to Kieran Setiya for discussion here.

45 See also Williamson (2010, 95–6) for an earlier discussion.
46 I use ‘tree’ in an informal sense here. In its technical sense, trees are well-founded, which the

Turing degrees aren’t, due to the Sacks Density Theorem.
47 Since for any set, there’s a closest world where that set is algorithmically decidable, this way of

glossing the semantic clause is apt. But since the structure of the Turing degrees is dense, a fully accurate
statement, such as the one given in the appendix, will have to be slightly more complicated in that we
can’t rely on the limit assumption.

48 See Fine (1977), Forbes (1989, 1992), and Williamson (2013, §8.4) for modalism about metaphys-
ical possibility. See also Williamson’s (2009, 9) related remarks about the role of Lewis’ comparative
similarity relation in the analysis of counterfactuals, as well as Stalnaker’s (1984, ch. 8) related remarks
about the role of his selection functions.

49 I borrow the expression ‘representational’ from Etchemendy’s (1990, ch. 1) closely related notion
of a representational semantics. Note that on a supervaluational treatment of vagueness, we would have
a class of privileged models, not a single one.

50 See Berto (2013, §3) for an overview of various theories of possible and impossible worlds.
51 Of course, if we want to allow for non-vacuous counterfactuals with logically inconsistent an-

tecedents, we will have to face this objection head on. See Berto (2013, §6) for an overview of responses
to this objection. In any case, accepting non-vacuous counterfactuals with merely metaphysically im-
possible antecedents doesn’t immediately commit us to such stronger failures of the vacuity thesis.

52 A construction similar to the present one that’s based on the enumeration degrees would yield
a model for a language with a designated predicate for computable enumerability. See Odifreddi (1992,
ch. XIV) for an introduction to enumeration degrees.

53 This is how Rogers, Jr. (1967, 276) puts the result in Corollary XVI of §13.4.
54 Of course, by building on Lewis’ model theory, we also inherit some of the potential problems

of the Stalnaker-Lewis approach to counterfactuals. For example, it doesn’t validate simplification of
disjunctive antecedents (see endnote 34). If simplification is indeed desirable, the present model theory
can be adapted along the lines developed by Fine (2012) or Santorio (MS) to accommodate it.

55 Note that for reasons of perspicuity, I use the usual letters ‘w,’ ‘v,’ ‘u,’ and ‘t’ to denote ‘world’
variables here, even though I previously used boldface letters as variables for the members of I .

56 See also Pollock (1976, 43) for a related logic SS, which can be turned into C1 by adding:

((φ�→ψ) ∧ ¬(φ�→¬χ )) → ((φ ∧ χ )�→ψ)
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and Beyond, MIT Press, pages 77–104.



Counterpossibles in Science: The Case of Relative Computability 559

Lewis, D. K. (1971). ‘Completeness and decidability of three logics of counterfactual conditionals’.
Theoria, 37(1): 74–85.

———. (1973). Counterfactuals. Harvard University Press.
———. (1986). On the Plurality of Worlds. Blackwell.
———. (1991). Parts of Classes. Blackwell.
Mancosu, P. and Zach, R. (2015). ‘Heinrich Behmann’s 1921 lecture on the decision problem and the

algebra of logic’. Bulletin of Symbolic Logic, 21(2): 164–187.
McGee, V. (2006). ‘There are many things’. In Thomson, J.J. and Byrne, A. (eds.), Content and Modality:

Themes from the Philosophy of Robert Stalnaker, Oxford University Press, pages 93–122.
Moss, S. (2012). ‘On the pragmatics of counterfactuals’. Noûs, 46(3): 561–586.
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Sorbi, A. (eds.), New Computational Paradigms: Changing Conceptions of What is Computable,
Springer, pages 139–152.
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