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CRYSTALLIZED REGULARITIES1 

Verónica Gómez Sánchez 

 

The nomic structure of our world spans many levels of description. The explanatory and predictive 

success of the ‘special sciences’ – biology, psychology, geology, and so on – reveals the existence of 

robust regularities (sometimes called ‘special science laws’) that knit non-fundamental phenomena into 

intelligible levels of description. There are two conceptions of how these robust regularities fit into the 

physical world. On a foundationalist conception, the physical laws (or physical properties) are the 

source of all other nomic facts, including the robustness of these macro-regularities. On an egalitarian 

conception, the physical laws are no more fundamental than the laws describing the behavior of genes, 

ecosystems, or societies.2  

Egalitarians and foundationalists agree that generalizations about nonfundamental reality can 

differ in nomic status:  Mendel’s laws of genetics and the laws of thermodynamics have an ‘elite’ status, 

which is not shared by merely true generalizations such as ‘All the coins in my pocket are silver’. But 

they disagree about how this elite status relates to physics.  While egalitarians give a single account of 

eliteness, which applies both to physical and higher-level generalizations, the foundationalist's account 

of eliteness divides into two (roughly independent) parts. The first part is understanding what, if 

anything, generates the fundamental laws of physics. (Here the term ‘fundamental law’ refers to those 

regularities whose lawful status doesn’t derive from more basic lawhood facts – even if their being 

 
1 This paper has benefitted from discussions with many people, including David Albert, Laura Callahan, Sam Carter, 
Ruth Chang, Eddy Chen, Barry Loewer, Jill North, Jonathan Schaffer, Isaac Wilhelm, and Tyler Wilson. I’m especially 
grateful to Ezra Rubenstein, Ted Sider and an anonymous referee at this journal for extensive feedback on earlier 
drafts.    
2 Egalitarianism is not a very unified position. Fodor is egalitarian in holding that special science laws have their own 

metaphysical ‘oomph’, which they do not inherit from the physical laws. See J. A. Fodor, "Special Sciences (or: The 

Disunity of Science as a Working Hypothesis)," Synthese XXVIII, 2 (October 1974): 97–115. Conversely, Nancy 

Cartwright, Craig Callender, and Jonathan Cohen arrive at an egalitarian conception by downgrading the metaphysical 

status of physical laws. For them, all lawful generalizations earn their nomic status in the same way: by capturing 

patterns that our experience of the world presents us with, in a vocabulary that is useful for us. See Nancy 

Cartwright, The Dappled World: Essays on the Perimeter of Science (New York: Cambridge University Press, 1999); Craig 

Callender and Jonathan Cohen. "Special Sciences, Conspiracy and the Better Best System Account of Lawhood," 

Erkenntnis, LXXIII, 3 (November 2010): 427–47; and Jonathan Cohen and Craig Callender, "A Better Best System 

Account of Lawhood," Philosophical Studies, CXLV, 1 (July 2009): 1–34. 
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laws is not fundamental).3 The second part is understanding how those fundamental physical laws 

generate nomic facts spanning all levels of reality.  

This paper aims to advance the second part of the foundationalist project. I develop and 

defend a reductive account of ‘robust generalizations’ or ‘special science laws’ which vindicates various 

aspects of scientific practice that may initially seem in tension with foundationalism. This account 

accommodates physically contingent, non-strict robust generalizations that have privileged 

formulations in non-fundamental vocabularies. The basic idea is that robust generalizations  earn their 

elite status by featuring in the ‘ideal scientific summary’ of the nearby physical possibilities.  

 

I. PRELIMINARIES 

 

I.1. The theoretical role of robustness. When we’re justified in attributing robustness to a generalization, 

we’re thereby entitled to rely on it in characteristic ways when engaged in predicting, reasoning 

hypothetically, and explaining. Before putting forward a metaphysical account of robustness, it helps 

to rehearse these conceptual connections. This will help clarify the target concept, as well as its 

significance to our theorizing.  

Consider firstly the connection between robustness and prediction. Encountering various 

black ravens warrants the conclusion that the next encountered raven will be black. But observing that 

some of the coins in someone’s pocket are silver doesn’t similarly justify the expectation that 

unobserved coins in her pocket are also silver. This intuitive asymmetry plausibly results from the fact 

that the generalization ‘All ravens are black’ seems like a good candidate for a robust regularity, while 

the generalization ‘All coins in my pocket right now are silver’ doesn’t.  

Secondly, robust generalizations support counterfactuals/hypotheticals. If you take ‘All ravens 

are black’ to be robust, you probably also endorse (and should endorse) a set of associated 

counterfactuals: ‘If a raven had been born a minute ago, it would have been black’, ‘If I were to fill 

this room with ravens, they would all be black’, and so on. In evaluating such conditionals, you consider 

alternative ways things might have been while holding fixed the raven-black connection. Contrast this 

to an accidental generalization such as: ‘All the people in this room are tall’. I might believe this to be 

 
3 I’ll be neutral on whether fundamental laws are metaphysically primitive, summaries of the world’s actual history, 
or generalizations that flow from the essences of properties.    
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true, but I do not endorse counterfactuals such as: ‘If Anne were in this room, she would be tall’, ‘If 

someone were to enter this room, they would be tall’, and so on.4 

Thirdly, robustness connects to explanation. This connection has two aspects. On the one 

hand, robust generalizations explain their instances. ‘All ravens are black’ explains why the particular 

ravens I happened to see today were black, whereas ‘Everyone in this room is tall’ doesn’t explain why 

Anne, who happens to be in this room, is tall. On the other hand, robust generalizations are capable 

of backing explanations of one particular state of affairs in terms of another. Why am I sleepy? Because 

I skipped my morning coffee. Here, the generalization ‘Coffee-drinkers who are caffeine-deprived get 

sleepy’ serves as a linking principle between two properties – sleepiness and caffeine-deprivation – licensing 

an explanation of an instance of the first in terms of an instance of the second. Only robust 

generalizations link properties in this way. I cannot explain why Anne is tall by citing the fact that she 

entered the room a minute ago. In a nutshell: explanations trace patterns of dependence that are 

underwritten by robust regularities. (The robustness of the generalization does not, however, suffice 

for the success of an explanation: not any sound argument containing a robust generalization as a 

premise is explanatory.)5  

Because of these connections to predictions, hypotheticals, and explanations, robust 

regularities may deserve to be called ‘laws’. I prefer to use a different term, to avoid connotations that 

the term ‘law’ has acquired. We should not assume at the outset that robust regularities are physically 

necessity, perfectly accurate, unrestricted in scope, and so on. Moreover, I want to leave open the 

possibility that robust regularities are importantly different from physical laws, even if they play some 

of the same roles. 

 

I.2. Robustness vs. Physical Necessity.  Providing a foundationalist account of robustness may initially seem 

like an easy task. The foundationalist can recognize a basic nomic distinction among macro-regularities: 

some are physically necessary (they are necessitated by the physical laws), and some are physically 

 
4 As Michael Strevens points out in "Physically contingent laws and counterfactual support," Philosopher’s Imprint, VIII, 

8 (August 2008): 1–20, contingent generalizations like ‘All ravens are black’ are not held fixed under all counterfactual 

suppositions. I follow Strevens in thinking that counterfactual support is a matter of degree: robust regularities have 

a much higher degree of counterfactual support than accidental generalizations. (I discuss this further in § 4.2).   

5 The claim that only robust regularities back explanation is compatible with causal/difference-making accounts of 

explanation that attribute a central role to causal generalizations. We can think of causal generalizations as constituting 

a special sub-class of the robust regularities, whose membership conditions are to be specified by a theory of 

causation/causal explanation. 
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contingent (they fail to hold in some physically possible scenarios). But more careful reflection reveals 

that the notion of physical necessity does not coincide with the notion of robustness that I seek to 

understand. Many physical necessities are not regarded as robust from the perspective of the higher-

level sciences, and some physically contingent regularities are so regarded.  

Grant, for argument’s sake, that ‘All emeralds are green’ is a physically necessary robust 

generalization. The truth of this statement metaphysically entails the truth of ‘All emeralds are green-

or-blue’, so the latter will be physically necessary as well. However, the generalization involving the 

disjunctive property green-or-blue does not thereby acquire the elite explanatory status that the former 

statement has. This suggests that the class of robust regularities is not closed under metaphysical 

necessitation: a statement’s robustness is not automatically transmitted to the statements that it 

necessitates. 

For familiar reasons, we cannot deal with this by associating robustness with a particular 

syntactic form. Compare ‘All emeralds are green’ and ‘All gremeralds are grue’ (where x is a gremerald 

if and only if it is an emerald and observed before 3000, or a sapphire and not observed before 3000). 

The two generalizations are syntactically alike, and have the same modal strength. Nonetheless, they 

clearly differ in explanatory power. 

Note that this issue cannot be solved by imposing a general ban on gerrymandered properties. 

Take ‘Consuming caffeine helps people stay awake’.  While this statement is plausibly robust, it entails 

non-robust generalizations that involve no disjunctive or gerrymandered predicates. Consider a variant 

of an example due to Henry Kyburg6: let an object be ‘hexed’ if and only if some hexing gestures are 

performed over it. ‘Consuming caffeine helps people stay awake’ metaphysically necessitates 

‘Consuming caffeinated beverages which have been hexed helps people stay awake’. But the latter 

generalization does not inherit the explanatory status of the original one. If I’m trying to explain why 

I’m more likely to be up late when I drink coffee in the evening, the right regularity to cite is the one 

about caffeine, not the one about hexed caffeinated beverages. 

One could insist that the above differences are not differences in nomic status, and argue on 

this basis that explaining them is not a task for a theory of robustness. One can pass the task over to 

the theory of explanation, which could then pass it along to the pragmatics department. It should be 

apparent, however, that other things being (roughly) equal, we should prefer a theory of robustness 

which helps us capture the above differences in explanatory power. Thus, I’ll be reserving the term 

 
6 Philip Kitcher, "Explanatory Unification," Philosophy of Science, XLVIII, 4 (December 1981): 507–31.  
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‘robustness’ for a class of explanatorily elite statements, which is not closed under metaphysical 

necessitation. It will not follow from the claim that ‘Fs are Gs’ is robust that ‘Fs are Gs-or-Hs’ is 

robust, even if the former necessitates the latter.  

I have presented reasons to think that physical necessity does not suffice for robustness. There 

are also reasons to doubt that physical necessity is necessary for robustness. There is a growing 

consensus that many physically contingent generalizations are capable of playing the roles associated 

with robustness.7  

This ‘contingency hypothesis’ has been most influential in the philosophy of biology, after 

John Beatty persuasively argued that no known biological generalizations are physically necessary.8 The 

key premise in Beatty’s argument is that all biological generalizations have been found to have 

exceptions. Take Mendel’s law of segregation: ‘In diploid organisms, the probability that each allele at 

a genetic locus is transmitted to a child is 50%’. A few species have been found to have genes that do 

not segregate in a 50:50 fashion, but exhibit a bias in favor of one of the alleles. Or consider 

generalizations about genetic coding, which specify pairings between nucleic acids and amino acids. 

These generalizations, once thought universal, turn out to have exceptions in certain eukaryotes.  

Exceptions are significant because they reveal the dependence of biological generalizations on 

conditions that look contingent from the perspective of physics. For instance, exceptions to 

generalizations about the genetic code make salient alternative ways this code could have been set up. 

Investigating these alternatives led Francis Crick to formulate the ‘frozen accident’ hypothesis: the idea 

that the genetic code is chemically arbitrary, but stable once established.9 

It may be true nonetheless that the above generalizations can be associated with physically 

necessary conditionals of the form: under conditions C, G (where C describes some background 

conditions that – together with the physical laws – entail the generalization G). But this alone cannot 

be what distinguishes them from accidental regularities. Take a true sentence of the form ‘In year x, it 

rained every other Tuesday’. If the laws are deterministic, there is some contingent condition C such 

 
7  See Gerhard Schurz, “What Is Normal? An Evolution-Theoretic Foundation for Normic Laws and Their Relation 

to Statistical Normality,” Philosophy of Science, LXVIII, 4 (December 2001): 476–497; Sandra D. Mitchell, "Ceteris Paribus 

– An Inadequate Representation For Biological Contingency," Erkenntnis, LVII (November 2002): 329–50; and 

Michael Strevens, "Physically contingent laws and counterfactual support, " Philosopher’s Imprint, VIII, 8 (August 2008): 

1–20. 

8 John Beatty, "The Evolutionary Contingency Thesis," in Gereon Wolters and James G. Lennox, eds., Concepts, 

Theories, and Rationality in the Biological Sciences (Pittsburgh: University of Pittsburgh Press, 1995), pp. 45–81. 

9 Francis Crick, “The Origin of the Genetic Code,” Journal of Molecular Biology, XXXVIII, 3 (December 1968): 367–379. 
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that ‘if C, then in year x it rained every other Tuesday’ is physically necessary. Yet this doesn’t show 

that the pattern of rain in year x was non-accidental. We need a principled distinction between 

physically necessary conditionals with robust consequents, and ones with accidental consequents.  

We have seen that physical necessity is neither necessary nor sufficient for robustness. If 

robustness is inherited by the macro from the micro, the inheritance principle is not as simple as: ‘All 

and only physical necessities are robust’. We need to find inheritance principles which ensure that 

nomic force i) reaches only those generalizations with the right structure and level of generality, and 

ii) can reach physically contingent generalizations. If no such principles could be given, egalitarianism 

would gain a lot of plausibility. But if we can provide such principles, there is no pressure to think that 

higher-level nomic structure is metaphysically autonomous.  

 

II. CRYSTALLIZATION 

 

The modal structure that our physical theories posit outstrips the notion of ‘physical necessity’. 

Physical theories come equipped with state-spaces, which tell us not only which configurations of the 

fundamental physical stuff are possible, but also which states are similar or ‘nearby’. If we take the 

current physical state of our world and change the location of three fundamental particles by 1nm in 

random directions, we get a state that is physically nearby. If, instead, we move around all of the 

particles that make up New York City, we will get a state that is further away.  

In what follows, I will develop the idea that our scientific efforts are primarily aimed the 

discovery of patterns that hold across our ‘modal neighborhood’: a class of possible worlds that are 

‘similar’ to ours (where world similarity is defined in terms of distance in a physical state-space).  

A generalization’s holding at all nearby worlds cannot, however, suffice to make it robust. The 

property of holding at nearby worlds behaves like a necessity modal (with a more restrictive accessibly 

relation than physical necessity). But robustness cannot be equated with any necessity modal, since it 

is not preserved under entailment.  

Taking inspiration from Lewis’s influential account of laws10, I suggest that what makes some 

regularities stand out as scientifically elite is their ability to efficiently summarize our modal 

neighborhood. I call such regularities ‘crystallized’. Crystallized regularities are the axioms of the best 

 
10 David Lewis, Counterfactuals (Malden: Blackwell, 1973). 
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system for our modal neighborhood, where this system spans all levels of description. The rest of this 

section develops and refines this definition of crystallization, by defining the notions ‘modal 

neighborhood’ and ‘best system’ in foundationalist-friendly terms.  

 

II.1 Modal Neighborhoods. Imagine possibility-space laid out around you. You are standing at the actual 

world, whose current state is s. Assuming physicalism, s can be exhaustively characterized in terms of 

the fundamental properties of the most basic physical objects (particles/space-time points), and the 

fundamental relations they bear to each other. To simplify the exposition, let us pretend that we are 

living in a classical world. Then, an exhaustive description of the current physical state consists of a 

specification of the position and momenta of each fundamental particle. The space of all possible 

states so described is known as ‘phase space’.  

From the perspective of a given point in phase space (in this case, the point corresponding to 

state s), we can ask which possible states are nearby. Then a state sʹ is near our state s if almost all the 

particles have similar positions and velocities in sʹ as they do in s. Given a state-description for s (that 

is, a specification of positions and momenta for each particle), we can create descriptions for nearby 

states by minimally modifying s – for example, by changing the location of a few hundred particles by 

a couple of meters,  giving some particles a small velocity boost… We can measure the distance of 

these modified states from the actual state s by appeal to a metric on the state-space: in this case, a 

Euclidean metric on phase space is the natural choice.11 

Once we have a notion of nearness for pairs of physical states, we can define nearness for 

worlds (which correspond to trajectories through state-space): Two worlds w and v are near at time t 

if (i) they have the same laws, and (ii) their states at t are near each other. If you collect all the worlds 

that are (or will be) near ours at some time in your lifetime, you get your ‘modal neighborhood’.  

 
11 Although phase space does not have intrinsic metric structure –there is no built-in definition of ‘distance’ between 

points – its structure does favor some ways of measuring similarity over others. For instance, it would be natural to 

pick a metric that obeyed the following constraints: two states that differ only in the position of one particle (by 1cm) 

are more similar to each other than two states that differ in the position of more particles (each by 1cm); if two states 

differ only in the position of a single particle, their degree of similarity should be inversely proportional to the distance 

between the particle’s respective positions.  

Various choices of units for the different physical quantities (position and momentum in our case) yield different 

Euclidean metrics. The incommensurability of these different quantities needn’t be a problem; the account succeeds 

as long as all reasonably natural metrics make similar predictions. 
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To appreciate why the idea of a ‘modal neighborhood’ might be of interest, take the robust 

regularity ‘All ravens are black’. Suppose we have granted that this regularity is physically contingent: 

non-black ravens populate many physically possible worlds. They can be found not only in exotic/very 

distant physically possible worlds, but also in worlds very much like ours at some point in history. 

Rewind to a time long before common ravens existed, when the first RNA populations were ready to 

undergo Darwinian evolution. Minor alterations to the state of the world back then would likely lead 

to dramatic differences in the course of evolutionary history. Worlds that were ‘nearby’ back then may 

now contain populations of brown ravens. Thus, the ravenhood-blackness connection was once 

fragile.  

Fast-forward to the present moment. Take the world’s complete state at some time in our 

epoch: the current time, yesterday, tomorrow, or a year from now. Consider minor alterations to that 

state: give a few particles a velocity boost, cut the wings off a mosquito in your office, delete a word 

in this paper. Each one of those ‘physically small’ alterations determines a physically similar possible 

state of the world. Evolve each of those states by the physical laws, in both temporal directions. 

(Assume for now that the laws are deterministic, so each state determines a single world). The minor 

alterations you made at the chosen time result in divergences from the actual world, both in the future 

and the past. In the nearby worlds with the wingless mosquito, you will not be bitten 20 times. So, you 

will finish your work earlier, you will arrive home earlier… and so on.  

Will these differences affect the color of ravens? Probably not.12 Even if you were to fiddle 

with a few raven eggs, you will not easily re-direct the evolutionary path of the species. In general, 

small physical changes will not affect the color of ravens, perhaps with the exception of very special 

targeted manipulations of many raven reproductive cells. ‘Ravens are black’ was once fragile, but it has 

become crystallized.  

This suggests that epochs differ with respect to their crystallized regularities. This should not 

come as a surprise. I have granted already that some crystallized generalizations depend on contingent 

background conditions. In the case of ravens, for instance, their color depends on conditions in the 

distant past (before raven evolution had taken its course), but also on conditions of the current 

environment: for example, the absence of established human practices of bleaching ravens. We do not 

normally expect these background conditions to change in the near future. But, given their 

 
12 Some readers may worry that evolving nearby states towards the past with the dynamical laws will often yield anti-

entropic world histories. I address this concern at the end of this section.   
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contingency, they may well change some day. And if this contingency doesn’t threaten the explanations 

and inferences we base on the generalization, the fact that it will one day cease to hold should not 

either.  

Similar reasoning suggests that different spatial regions may support different robust 

regularities at a given time. Suppose you were to learn about a human population that traveled from 

Earth to another planet long ago, and has been established there ever since. Their visual and auditory 

systems may have subtly changed in response to their new environment, meaning that our best 

psychological theories do not describe them accurately. Arguably, this should not make any more of a 

difference to our Earth-bound psychological theorizing than what happens in other physically possible 

worlds.13  

To allow for crystallization to vary across epochs and locations, I will relativize the notion of 

a modal neighborhood to a spatio-temporal region R. Suppose, for instance, that our region of interest 

is that occupied by Earth from 1000 to 3000. The modal neighborhood of R at our home world w is 

a set of physically possible ways R could have been which are nearby from the perspective of w.  I’ll 

use world-region pairs <R, v> to represent ways region R might have been (the way R is at world v is 

a way R could have been at the home world w). More precisely: 

 

MODAL NEIGHBORHOOD 

The modal neighborhood of <R, w> is the set of all pairs <R, v> such that:  

1) v and w have sufficiently similar (complete) states at some time in R, and 

2) v obeys w’s laws.14  

 

 
13 Someone might deny that this faraway civilization is human. However, there is surely some natural kind that 

encompasses both civilizations (plausibly, the biological notion ‘human species’). Let ‘pan-human’ pick out that 

broader kind. In the imagined scenario, we would still like to predict and explain seemingly non-accidental patterns 

concerning the broader kind (for example, ‘All pan-humans studied by X’s lab in 2020 perceived stimulus S as a rigid 

object’). Now, if all robust psychological generalizations are about the narrow kind human, then explanations and 

predictions of such regularities (concerning pan-humans) would have to rely on a generalization linking humans and 

pan-humans (for instance, ‘All members of the human species in earth are humans’). Thus, not all region-relativity 

would be eliminated. (Thanks to an anonymous referee for raising this issue.) 

14 This definition assumes primitive trans-world identity for spatio-temporal regions, as well as a privileged 
simultaneity structure. These assumptions simplify the presentation, but are not essential to the account. The 
definition could be rephrased in terms of Cauchy surfaces and counterpart relations on space-time regions. 
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For example, take <Earth-today, actual world> as our domain of interest. The following recipe yields 

worlds in its neighborhood. Pick any time t in the relevant epoch: in this case, any time today. Identify 

the state of the world at t – call it s. Make a physically small change to s within the relevant spatial 

region; for instance, make the velocity of a bird in Antarctica slightly slower. This change takes us to 

a nearby state sʹ. The physically possible world(s) whose state at t is sʹ will be one of many worlds in 

the modal neighborhood of <Earth-today, actual world>. Note that this world must differ from actuality 

at times before and after t. Shortly before t, the mental state of the bird would have been different. 

Shortly after t, the mental state of anything perceiving the bird would register a different velocity. And 

so on…15  

We can repeat this procedure for any time t today; any world we reach is in the modal 

neighborhood. Thus, the modal neighborhood of <Earth-today, actual-world> contains a continuous 

infinity of richly varying worlds. But, by construction, these worlds have at least two things in common: 

1) they obey the actual laws of physics, and 2) they closely resemble the actual world at some time 

today (but different worlds resemble the actual world at different times). To be crystallized relative to 

Earth-today, a generalization G ought to hold locally at enough of these neighboring worlds. 

Before moving on to discuss best systems, I have like to draw attention to an important issue 

concerning time’s arrow. The crystallization account will need to be paired with some solution to the 

problem of time’s arrow, which has been widely discussed in the foundations of statistical mechanics. 

The problem is this: many of the nearby trajectories which are compatible with the dynamical laws 

have very strange pasts. If we take arbitrary nearby states, and evolve backwards with the dynamical 

laws, we will end up with lots of world-histories that exhibit a strange entropy gradient: entropy 

increases towards the past as well as the future. This means that, in many of these worlds, we find all 

sorts of thermodynamic processes happening ‘in reverse’: ice unmelting, coffee spontaneously getting 

warm…  

 
15 This recipe for identifying a worlds’ neighbors (with respect to region R) is closely related to Tim Maudlin’s recipe 

for evaluating counterfactuals, in The Metaphysics within Physics (Oxford: Oxford University Press, 2007). According to 

Maudlin, to evaluate ‘P at t > Q’ we start with a description of the world at t, modify it in accordance with an 

instruction encoded in the antecedent of the counterfactual (make it such that P at t while changing as little as 

possible), and let the laws ‘generate’ a physical model (a world) by taking the modified state description and evolving 

it with the laws. An important difference between Maudlin’s recipe for ‘constructing’ nearby worlds and my own is 

that I’m using the laws to evolve states in both temporal directions, while Maudlin only uses them to generate what 

is in the future of the state in question. I will explain why I favor the time-symmetric recipe later in this section.   
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I do not aspire to provide a novel solution to this problem here. It is enough for my purposes 

that my account fits well with existing proposals. For concreteness, I shall adopt a view defended 

primarily by David Albert and Barry Loewer, according to which the fundamental laws of physics 

include not only the dynamical laws, but also a law about the initial conditions of the universe. This 

additional law, known as the ‘Past Hypothesis’, specifies that the world began in a low-entropy state s0 

(as a matter of nomological necessity);16 this will guarantee that anti-entropic worlds are extremely rare 

in our modal neighborhoods.   

Adopting the Past Hypothesis as a fundamental law is not our only option. Another option is 

to invoke a time-asymmetric notion of world-similarity in constructing the modal neighborhood. Note 

that my procedure for constructing the modal neighborhood of a region-world pair R,w was time-

symmetric. I considered taking time-slices intersecting the region R, modifying them, and then 

evolving the resulting states with the laws, both towards the future and towards the past. But I could 

have opted instead for a time-asymmetric, non-backtracking distance metric. I could have said, for 

example, that a world is near ours relative to R if and only if it is slightly different at some time t in R, 

identical before t, and respects the laws of our world as much as possible. A region R’s modal 

neighborhood would be constructed by taking some time slice t intersecting R, modifying it slightly, 

and evolving forwards with the dynamical laws, while leaving everything in its past fixed.17 If we 

adopted this time-asymmetric recipe, the reversibility worries that afflict attempts to reduce 

thermodynamics to physics would not arise: almost all worlds in the neighborhood would have normal 

entropy gradients.18 

Readers who are skeptical of the past hypothesis (conceived as a  law) may prefer this 

alternative construction of the modal neighborhood. I chose not to rely on a time-asymmetric notion 

of world nearness/similarity because I did not want to assume that temporal asymmetries could be 

fully explained independently of robustness structure. It seems to me that relying on a time-asymmetric 

similarity metric in the account of higher-level laws amounts to putting an asymmetry into non-

fundamental sciences by hand. But we might have hoped for something more: to see how the whole 

 
16 David Z. Albert, Time and Chance (Cambridge: Harvard University Press, 2000); Barry Loewer, "Two accounts of 

laws and time," Philosophical Studies, CLX, 1 (August 2012): 115–37.  

17 Michael Strevens, Depth: An Account of Scientific Explanation (Cambridge: Harvard University Press, 2008), at p. 290, 

gestures at the view that higher-level laws (robust regularities) are merely regularities that extend to nearby worlds, 

where ‘nearby’ is understood under the non-backtracking interpretation. While he ends up rejecting this sort of view 

(on the grounds that regularities don’t explain their instances), I expect that he would be sympathetic to the idea that 

robust regularities hold throughout modal neighborhoods (given the non-backtracking construction). 

18 Thanks to an anonymous referee for suggesting this alternative.   
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structure of non-fundamental science (including temporal asymmetries in non-fundamental laws) 

arises from physics.  

There is, however, an interesting alternative approach which is not objectionably time-

asymmetric. We would start by defining not one notion of crystallization but two: future-crystallization 

and past-crystallization. A regularity is future-crystallized if and only if it features in a good summary 

of the physically possible worlds that are similar in the past, and diverge in the future. A regularity is 

past-crystallized if and only if it features in a good summary of the physically possible worlds that are 

similar in the future, and diverge in the past. We could then try to explain why future-crystallized 

regularities are more significant to embedded agents like us than past-crystallized generalizations (why 

they are more capable of playing the robustness role). The challenge would be to have an explanation 

for this that didn’t itself smuggle other higher-level temporal asymmetries (for example, the fact that 

we can influence the past but not the future). Pursing this alternative strategy requires a more rigorous 

exploration of the foundations of statistical mechanics and its relation to the asymmetry of agency, 

which I will have to postpone for future work.  

 
 
II.2 Balancing Theoretical Virtues. In its original formulation, the best systems account was meant to be 

an account of fundamental laws.19 It has since been used to motivate an egalitarian picture where 

special sciences can have their own ‘best systems’, expressed in their own vocabularies.20 However, the 

foundationalist tradition has not drawn on the insights from Lewis’s account of laws to shed light on 

how statements about the macro-world inherit their elite nomic status from the underlying physics. 

This is what I propose to do in what follows. I will repurpose what I take to be the most promising 

aspects of Lewis’s best systems view to give a foundationalist account of robust regularities at all levels 

of description.  

Systems will be assessed along three dimensions: i) how faithfully they describe the modal 

neighborhood (accuracy), ii) how much they tell us about the modal neighborhood (informativeness), and  

iii) how easily they can be expressed in suitable vocabularies (simplicity). The best system is the set of 

statements that strikes the best balance of these virtues.  

 

 
19 David Lewis, Counterfactuals, op. cit. 

20 Callender & Cohen, "Special Sciences, Conspiracy and the Better Best System Account of Lawhood," op. cit.  

Cohen & Callender, "A Better Best System Account of Lawhood," op. cit.  
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Simplicity. A system is simple to the extent that it has a short formulation. Since the length of a statement 

is language-dependent, we need a privileged language. What could be a principled choice? Lewis 

suggests that all candidate systems be stated in a ‘fundamental language’, that is, a language whose 

predicates denote fundamental properties.21 But this will not do in the present context, where the goal 

is to allow for systems that describe reality at many levels of description (that is, in the vocabulary of 

many special sciences).  

Instead, I will draw on an idea due to Micahel Hicks and Jonathan Schaffer22. They modify 

Lewis’s criterion to allow non-fundamental quantities (such as acceleration) into the lawbook. Their 

idea is to let candidate systems be written in any language whatsoever, and take a system’s simplicity 

to be a function of i) its length, and ii) the degrees of naturalness of its primitive predicates. On this 

approach, ‘Gremeralds are grue’ will be complex despite superficially appearing simple, because its 

predicates denote highly unnatural properties. (A property’s degree of naturalness could be taken as 

primitive, it could be understood in terms of ease of definability in fundamental terms23, or it could be 

taken to depend on our interests and/or psychological makeup).24 25 

 

Informativeness. Start from a familiar idea: a system is informative when it rules out many possibilities; 

it is uninformative when it rules out few possibilities. Although this cannot be understood 

straightforwardly in terms of the number of possibilities, there is something in this idea that is worth 

keeping.  

Imagine you and I are trying to locate a spider in a large empty room. You have been told that 

the spider is in a particular corner; I have only been told which half of the room the spider is in. Clearly, 

you are more informed than me. But how much more? A natural answer suggests itself: it depends on 

 
21 David Lewis, "New Work for a Theory of Universals," Australasian Journal of Philosophy, LXI, 4 (December 1983): 

343–77. 

22 Michael Townsen Hicks and Jonathan Schaffer, “Derivative Properties in Fundamental Laws”, The British Journal 

for the Philosophy of Science, LXVIII, 2 (September 2015): 411–50.  

23 David Lewis, "New Work for a Theory of Universals," Australasian Journal of Philosophy, LXI, 4 (December 1983): 

343–77. 

24 See Barry Loewer, "Laws and Natural Properties," Philosophical Topics, XXXV, 1/2 (Spring/Fall 2007): 313–28; 

Callender & Cohen, "Special Sciences, Conspiracy and the Better Best System Account of Lawhood," op. cit;  Cohen 

& Callender, "A Better Best System Account of Lawhood," op. cit.  

25 I argue elsewhere ("Naturalness by Law", manuscript) for a version of the second option. I suggest that we define 
the simplicity of a candidate system as a function of 1) syntactic simplicity in a higher-level language, and 2) ‘semantic 
simplicity’, which tracks the complexity of the real definitions of the terms involved. However, the crystallization 
account is compatible with any conception of degrees of naturalness, including ones in which naturalness is 
anthropocentric and/or context-dependent. 
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how much bigger my region of possible locations is than yours. Although both of our information-

states are compatible with continuum many possible spider-locations, there is a sense in which you’ve 

ruled out more possibilities than I have. This is because, using a natural measure on the space of 

possible locations, we can say that the region of possibilities associated with my information-state is 

larger than the region of possibilities associated with yours. 

 We can generalize this idea by imposing a measure on sets of worlds: the informativeness of 

a system S relative to a region R is inversely proportional to the measure of the set of all worlds v such 

that S holds at <R, v>.26  

Does the dependence on a choice of measure suggest that informativeness is not an objective 

property of systems? Not if some measures are privileged from the perspective of physics. For 

instance, Classical Statistical Mechanics has an impressive track record of explanations that rely on a 

standard measure on phase space. Although we can define various measures on this space, there is one 

measure that respects the intrinsic structure of the space (giving a natural notion of ‘volume’), and 

uniquely satisfies a natural dynamical constraint: a region of measure m always evolves, under 

Hamiltonian dynamics, into another region of measure m. This natural measure on phase space induces 

a natural measure on the space of physically possible worlds, which can then be plugged in to the 

above definition of informativeness.   

Admittedly, more needs to be said to support the connection between a measure’s naturalness 

and its appropriateness for defining theoretical virtues (such as informativeness). My conjecture is that, 

in worlds like ours, ‘how many’ possibilities an agent can rule out (by the lights of the natural measure) 

will  correlate better with agents’ abilities to achieve their goals – and, therefore, natural measures track 

quantities that we care about. A rigorous argument for this conjecture would require a much deeper 

understanding of agency (and its physical basis), and falls outside the scope of this paper. 

 

Accuracy. Accuracy is not standardly considered a virtue to be balanced with simplicity and 

informativeness, except in the case of probabilistic generalizations, where a closely related notion (‘fit’) 

is introduced. For Lewis, a set of statements will not even enter the best systems competition if it 

 
26 We may need to refine this definition to favor systems whose information can be easily ‘extracted’. Predicting what 

will happen to an ecosystem on the basis of the physical laws alone would be extremely hard, because ecosystems are 

highly complex when described in physical vocabulary. This same situation may be relatively easy to model at a higher 

level, if there are dynamical generalizations about ecosystems specifiable in macro-terms. These generalizations could 

be used to (tractably) derive predictions about the system without specifying its initial state in full detail. (Making this 

precise will have to be postponed for future work). 
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contains a single falsehood. This, however, seems unmotivated when we’re dealing with special science 

generalizations. It seems odd to require generalizations to be exactly true to feature in the best system, 

when it is difficult to come up with a single example of a strictly true generalization that is considered 

elite in the special sciences. I suggest, instead, that we drop this requirement. We can take accuracy to 

be a third virtue, which can sometimes be sacrificed to some degree in favor of the other two virtues.  

The best systems competition, as I envisage it, looks for systems that can function as 

summaries of any world-region pair in a modal neighborhood. This departure from standard best 

systems accounts will require a non-standard notion of accuracy: accuracy relative to a modal 

neighborhood. I will take the accuracy of a system, relative to a modal neighborhood, to be given by 

its average accuracy throughout that neighborhood. (If we’re dealing with indeterministic physical laws 

that assign probabilities to world-histories, we should weigh accuracy-scores throughout the modal 

neighborhood accordingly, so that exceptions in improbable worlds are less costly). 

I have not yet said how we will quantify a system’s accuracy with respect to each world-region 

pair. We will need a degreed notion of accuracy, which counts some falsehoods as being more accurate 

than others. For instance, ‘All ravens are black’ (although false) should count as more accurate than 

‘All ravens are white’.  

A simple-minded metric may work for generalizations like ‘All ravens are black’. We can just 

ask how numerous and widespread the exceptions are (that is, how many non-black ravens are there?). 

However, we need something subtler to deal with generalizations that depart from this simple form, 

such as generalizations connecting variables that take continuously many values. Take the ideal gas 

law, which mathematically relates various macro-variables of gases (pressure, volume, and temperature, 

number of molecules). No real gas satisfies this generalization exactly, but almost all gases will 

approximately satisfy it. To measure the generalization’s accuracy, we take each of the instances in the 

relevant region (that is, each gas located within the region), measure the divergence between its macro-

properties at various times (its pressure, volume, and temperature) and those of the most similar ideal 

gas, and then aggregate those divergences (across various macro-properties for each gas, and then 

across all gases in the region).  

  

II.3 Probabilistic Axioms. I have been restricting my attention to non-probabilistic generalizations. It is 

a nice feature of my account that it can be straightforwardly extended to deal with probabilistic 

generalizations, regardless of whether the underlying physical laws are themselves deterministic or 
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stochastic. The strategy for this extension comes from Lewis27; I will merely explain how to adapt it to 

our context.  

Consider a simple world that consists of a random sequence of coin tosses: HTTH 

HHTHTTHTHH… If someone asked you to tell them something concise and informative about this 

world, what would you say? By listing the whole sequence, you could be maximally informative, but 

you would not be concise. You could say something less specific, like ‘about half the tosses came up 

Heads’. But you could be even more helpful by giving your interlocutor the following set of 

instructions: for any sufficiently long sub-sequence, expect about half Heads and half Tails; for each 

particular outcome, be indifferent between Heads and Tails; expect many consecutive Tails (or Heads) 

to occur quite rarely… These instructions may not sound concise as they stand, but they can be 

packaged into a single ‘chance axiom’: an assignment of a number between 0 and 1 to the relevant pair 

of properties. In this case: <coming up Heads, being a coin toss> is assigned the number 1/2. 

Unlike statements, chance axioms do not inform by telling us which propositions to put in our 

‘belief-boxes’. Instead, they directly tell us how to adjust our credences in various propositions. In our 

simple coin-world, the statement Pr (Heads, coin toss) = 1/2 tells us that, absent specific information 

about the outcome, we should be indifferent between Heads and Tails.28 It also tells us that we should 

expect roughly equal numbers of Heads and Tails in the long run, and so on.  

Chance axioms, so understood, are not simply true or false, and they do not rule out any 

possibilities.29 Thus, the notions of informativeness and accuracy characterized above will not apply. 

However, these axioms can be judged for informativeness and accuracy on the basis of the credences 

that they recommend. There are standard ways of quantifying how ‘opinionated’ a distribution is, 

which we could use to quantify systems’ informativeness (assuming we’re dealing with systems that 

specify complete probability distributions over world-region pairs).30 Moreover, standard notions of 

 
27 See David Lewis, "Humean Supervenience Debugged," Mind, CIII, 412 (October 1994): 473–90. 

28 I’m assuming there is some principle along the lines of Lewis’s Principal Principle connecting chance axioms and 

credences. 

29 I’m not suggesting that natural language statements about objective probabilities fail to express propositions. They 
are naturally interpreted as saying something like ‘the best system recommends such-and-such credences’. 
30 The technical notion is ‘entropy’. (Not to be confused with thermodynamic entropy, which is a property of physical 
systems). Roughly, the entropy of a probability function Pr specifies the amount of information you expect to get from 
a subsequent observation – under the idealization that you will observe event E with probability Pr(E). A uniform 
distribution has maximum entropy, and a distribution that assigns probability one to a single outcome (in our case, a 
single world-region pair) has zero entropy.  
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‘distance from the truth’ (relative to each world in the modal neighborhood) yield a natural combined 

estimate of accuracy and informativeness.31  

Not all candidate systems explicitly specify complete probability distributions. A candidate 

system may consist of a single probabilistic axiom: ∀x Pr (black(x)|raven(x))= 0.99. We can think of 

such an axiom as stating a constraint on probability distributions. Pr satisfies this constraint if and only 

if for every pair of propositions p and q, if p says of some object that it is black and q says of that same 

object that it is a raven then Pr ( p| q)=0.99. To evaluate the accuracy and informativeness of a system 

like this one, we can use a simple trick: associate the system with the  least informative distribution 

that satisfies the constraints imposed by the system. In a sense, this distribution incorporates only the 

information embodied by the system, so we can let the system inherit its accuracy/informativeness 

score(s) from the associated distribution.  

 

The crystallization account is now complete: the crystallized regularities within a region are the axioms 

of the best system for the region’s modal neighborhood. In what follows I will argue that this account 

vindicates the intuitive distinctions that the foundationalist wanted to draw, and also promises to 

illuminate the importance of robust regularities for beings like us. But before doing this, I would like 

to draw attention to two ‘free parameters’ within the account, and say something about how I 

understand them.  

How nearby does <R,v> have to be in order to be in the modal neighborhood of <R,w>? I 

will leave this proximity threshold unspecified.  The crystallization account succeeds as long as there is 

some (non-extreme) setting of this threshold that characterizes the notion of robustness that we care 

about.  

The best systems account also requires a balancing function specifying how much each of the 

virtues matters to the system’s overall quality. Where we draw the boundary between crystallized and 

 
31 For distributions defined on a finite set of propositions, a natural choice is the Brier score: the average squared 

distance between the subject’s credence in atomic proposition P and the ‘true value’ of P (that is, 0 if P is false, and 

1 if it is true). The ‘distance from the truth’ idea can be generalized to the continuous case, provided that the 

hypothesis-space has metric structure. See for instance the ‘continuous ranked probability score’ (CRPS), in Thomas 

A. Brown, "Admissible Scoring Systems for Continuous Distributions," RAND Corporation (August 1974). The Brier 

score and the CRPS in fact capture at the same time the uncertainty of the distribution, as well as its ‘reliability’ (See 

Hans Hersbach, "Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction 

Systems," Weather and Forecasting, XV, 5 (October 2000): 559–70.) Thus, if accuracy is measured in accordance to one 

of these rules, we only need to consider two virtues: accuracy score and simplicity.  
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non-crystallized regularities depends on the choice of balancing function. For some choices, perhaps, 

only generalizations stated in physical vocabulary (for example, Schrodinger’s equation) come out as 

crystallized. But the more we weight we put on informativeness, the more generalizations will count 

as crystallized. This is the key to understanding why crystallized regularities are not just the equations 

that describe with perfect accuracy the dynamics of fundamental particles (or fields). We can get more 

informative systems about the modal neighborhood(s) we inhabit if we begin to tolerate some 

inaccuracy, as well as greater complexity. The most powerful summaries of our modal neighborhood(s) 

will include, besides physical generalizations, stable generalizations written in the vocabulary of 

biology, neuroscience, geology, and so on. 

Thinking of the balancing function and the proximity threshold as free parameters allows us 

to draw fine distinctions between the statuses of different sciences and different generalizations within 

a science. We can make sense of the idea that some generalizations are ‘more’ crystallized than others, 

if they feature in the best system under strictly more parameter-values. For instance, chemical and 

thermodynamic generalizations could turn out to be more crystallized than generalizations in biology 

and economics. This fits nicely with a conception of robustness defended by Sandra Mitchell32, on 

which the nomic statuses of regularities vary along multiple dimensions such as: stability, tractability, 

strength, idealization, and so on. 

We can ask how various kinds of human theorizing relate to the above parameters. I will not 

settle this issue here, but I expect that, for any given context, there is a range of parameter-values that 

characterize the distinctions we care about equally well. This is as it should be with reductions of 

human concepts: the candidate metaphysical analyses should be precise, and the mapping from our 

vague terms to those candidate analyses should be indeterminate. 

 

III. Robustness as Crystallization 

 

According to the ‘crystallization account’, the notion of crystallization defined in §2 accounts for the 

notion of robustness characterized in §1.1 by its theoretical role. The goal of this section is to show 

why this claim should appeal to foundationalists.   

 
32 This fits nicely with a conception of robustness defended by Sandra D. Mitchell, "Dimensions of Scientific Law," 

Philosophy of Science, LXVII, 2 (June 2000): 242–65, on which the nomic statuses of regularities vary along multiple 

dimensions such as: stability, tractability, strength, idealization, and so on. 
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The claim that crystallization accounts for robustness can be understood in two ways. On one 

reading, the thesis says that the definition of crystallization stated before is itself a definition of 

robustness in more fundamental terms. On a weaker reading, the thesis states that, in worlds like ours, 

every robustness fact holds in virtue of a corresponding crystallization fact. This weaker thesis allows 

robustness facts that are grounded in some other way in distant worlds. The choice between these two 

theses will depend on subtle metaphysical and meta-semantic issues that I would like to bracket here; 

thus, I will only be arguing for their disjunction. 

In what follows I will argue, first, that the account explains the intuitive contrast between ‘local 

necessities’ (such as ‘All ravens are black’) and mere accidents (such as ‘All the pennies in my pocket 

are silver’), and in doing so vindicates the core intuitions motivating foundationalism (§3.1). Then I 

will show that adopting the crystallization account allows us to draw a further nomic distinction that 

is crucial for a theory of explanation (§3.2). Finally, I will suggest that thinking of robustness in terms 

of crystallization takes us a step towards a more ambitious foundationalist goal: understanding – from 

the perspective of physics – the importance that robust regularities have for physical agents like us. 

§3.3 sketches the beginnings of such a story.   

 

III.1 Local Necessities. I started out drawing a contrast between ‘All the pennies in my pocket are silver’ 

and ‘All ravens are black’. While the former seems accidental, the latter does not. The challenge was 

to identify the physical basis for this modal difference, given that both regularities depend on physically 

contingent factors. The crystallization account has the resources to explain this contrast.  

Let me start by introducing the notion of a ‘local necessity’: 

 

LOCAL NECESSITY 

To be ‘locally necessary’ (relative to R,w) is to be metaphysically necessitated by the 

robust regularities at <R,w>. 

 

If we accept that crystallization accounts for robustness, we can conclude that a regularity is ‘locally 

necessary’ (relative to R,w) if and only if it is metaphysically necessitated by the axioms of the best 

system of the modal neighborhood for <R,w>. A regularity is accidental if it not locally necessary.  

I cannot offer decisive proof that generalizations like ‘All ravens are black’ will be necessitated 

by the axioms of the best system. Similarly, proponents of the best systems account of fundamental 

laws cannot prove that Schrodinger’s equation (or whatever equation will come to replace it) will feature 
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in the best system. All I will offer is a plausibility argument that statements like these are either in the 

best system, or entailed by it.  

As far as we know, ‘All ravens are black’ is highly accurate in our world, at least if we restrict 

ourselves to a certain epoch on Earth – say, the 21st Century. It is plausible, moreover, that this 

regularity holds in the corresponding modal neighborhood. Choose any time in this century, and find 

physically possible worlds that are very similar to ours at that time. Surely you will not see pink ravens 

populating Earth in this world a decade later or a decade before.  

Besides being accurate throughout nearby worlds, ‘All ravens are black’ appears to be 

informative, simple, and mentions no gerrymandered properties. Given this, it is plausibly an axiom 

of the best system, unless it already follows from other axioms. In either case, it will count as a ‘local 

necessity’ and therefore as non-accidental. The same can be said for many other biological 

generalizations, which may be contingent but have a genetic basis that is widespread and resistant to 

small physical changes. For example: ‘Tigers have stripes’, ‘Olives are high in sodium’, or ‘Humans are 

subject to confirmation bias’.  

This plausibility argument extends beyond generalizations with a genetic basis. Some 

crystallized regularities may be sustained by powerful and widespread cultural mechanisms: for 

example, English speakers say ‘hello’ when they encounter a friend… The  psychological features 

underlying these dispositions are spread across many minds, and sustained by a complex dynamic of 

social incentives. This makes it plausible that small physical changes will not disrupt them. If so, these 

generalizations are highly accurate throughout the kinds of modal neighborhoods we care about. Since 

they are also plausibly simple and informative, we can expect them to be axioms of the best system (if 

not already entailed by other axioms).33 

You may wonder whether the account’s yielding the robustness of such mundane 

generalizations as ‘English speakers say ‘hello’…’ is not a symptom of excessive permissiveness. I think 

not: many true generalizations will be too modally fragile from the perspective of physics to make it 

to the best system of the modal neighborhood for a region of interest.  

To see how the account rules out accidental generalizations, let us consider a couple of cases. 

Start with our simple example: ‘All the coins in my pocket are silver’. This generalization will be highly 

inaccurate throughout any sufficiently expansive modal neighborhood. It fails in all the worlds where 

 
33 As this example illustrates, crystallized regularities can depend on arbitrary conventions. Such regularities may have 
been fragile when the convention was just starting, but they are now crystallized.    
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I find a lucky penny on my way to work, or where I get five pennies instead of a nickel at the local 

café.  

Now take a more interesting case, which has been used to illustrate the difference between 

foundationalism and egalitarianism.34 Imagine that, in some spatio-temporal region of our world, coins 

happen to land Heads 90% of the time, despite the physical characteristics of coins and coin-tossers 

being just as they are around here. The foundationalist regards these patterns as flukes, not 

autonomous robust regularities. After all, they do not seem like the kinds of regularities that our 

physical laws are capable of reliably sustaining.   

The crystallization account can accommodate this foundationalist intuition. Take an arbitrary 

time-slice intersecting the spatio-temporal region R where coins landed heads 90% of the time. As 

before, make small changes to the state of R at the relevant time: change the trajectory of a bird, the 

position of a few specks of dust, or the speed of a few air molecules. Many such changes will make a 

difference to the exact velocity and height with which coins are tossed after t. Given the symmetry of 

the coin (and the underlying physics) the frequency of heads in almost all of these worlds will end up 

being much lower than 0.9. If so, the generalization ‘Coins land heads with probability 0.9’ will be 

highly inaccurate in nearby worlds, and any system is plausibly better off without it. 

The moral is that we can allow for contingent regularities to figure in the best system for non-

fundamental phenomena, without having to give up foundationalism altogether. The crystallization 

account shows that robust regularities can be dependent on, and sufficiently constrained by, the 

fundamental physical structure, even if they are not determined by the physical laws alone. This, I 

think, is the first step to vindicating the foundationalist worldview.  

 

III.2 Axioms and Theorems. As we saw already, differences in modal force are not the only differences 

that we deem scientifically relevant. ‘All ravens are black-or-green’ does not share the explanatory 

status of ‘All ravens are black’, but neither is accidental. The present account has the resources to draw 

these fine-grained distinctions. Crystallized regularities are the axioms of the best system. They are to 

be distinguished from mere local necessities (the statements they necessitate). Unlike the axioms, mere 

local necessities do not have a distinguished explanatory status.   

Let me now illustrate the work that the axioms/local necessities distinction can do for us, by 

discussing a few cases mentioned before. Suppose ‘All ravens are black’ is crystallized relative to earth-

 
34 This example was suggested to me by David Albert.  
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2019. Then ‘All ravens are black or green’ will be deductively entailed by the best system for this region, 

and will thereby count as a ‘local necessity’ relative to earth-2019. Note, however, that the simpler 

generalization ‘All ravens are black’ will exclude ‘All ravens are black or green’ from the axioms of the 

best system. Adding the disjunctive statement as an axiom would yield a more complex system, with 

no gain in accuracy or informativeness. Thus, the system that didn’t explicitly include the disjunctive 

statement was better.   

Now consider ‘All gremeralds are grue’. By my account of simplicity, generalizations that have 

short formulations in highly natural vocabulary are simpler than generalizations that only have 

comparably short generalizations in unnatural vocabulary. Keeping this assumption in mind, compare 

the pair of gruesome generalizations (‘Gremeralds are grue’, ‘Graphires are bleen’) with the pair 

(‘Emeralds are green’, ‘Sapphires are blue’). Given the connection between simplicity and naturalness, 

the latter pair is simpler. And given that the pairs are equally informative and accurate, it’ll be the latter 

that gets into the best system’s axioms – if either does. 

Finally, recall the variant of Kyburg’s example: the generalization ‘Hexed caffeinated beverages 

keep humans awake’ (where x is ‘hexed’ iff certain ‘hexing’ gestures and utterances were made over it). 

I can explain why the coffee I hexed this morning kept me up, by saying that caffeine keeps humans 

awake, and that hexed coffee was caffeinated. My explanation would be worse had I cited instead the 

generalization ‘Hexed caffeinated beverages keep humans awake’. The distinction between axioms and 

theorems helps explain this asymmetry: ‘Hexed caffeinated beverages keep humans awake’  follows 

from the simpler and more informative claim, namely: ‘Caffeine keeps humans awake’. Given this, the 

hexed caffeine generalization is excluded from the axioms of the best system.   

Perhaps ‘Caffeine keeps humans awake’ is entailed by other generalizations which are 

themselves axioms – in which case it will not be an axiom either. Even so, the distinction between 

axioms and local necessities may help us account for the fact that ‘Hexed caffeinated beverages keep 

humans awake’ doesn’t explain its instances, while ‘Caffeine keeps humans awake’ does. Here is a 

sketch of how this could go. Suppose that a locally necessary generalization explains one of its instances 

if and only if the generalization figures in every ‘suitable’ argument from the axioms to that instance 

(where ‘suitability’ requires an optimal balance of simplicity/naturalness, generalizability, and other 

such features). An account along these lines may give us the resources to distinguish between local 

necessities that can be cited to explain their instances (such as ‘Caffeine keeps humans awake’) and 
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those that are too specific (such as ‘Hexed caffeinated beverages keep humans awake’), or too 

disjunctive (such as ‘Caffeine-or-sugar keeps humans awake’) to explain their instances.35  

 

III.3 Why Care about Robustness? The foundationalist vision will be vindicated if all nomic facts can be 

understood in terms of physics. But we could hope for more: we could hope to understand, from the 

perspective of physics, why higher-level nomic facts are of interest to intelligent beings. Why should 

physical agents care about the distinction between robust and accidental regularities? In this section I 

will outline a strategy for answering this question that draws on the crystallization account. 

Essential to our survival is the ability to select the best action available to us, given the state of 

our environment. Knowledge about the actual world does not suffice for these purposes if we cannot 

draw on it to infer what would happen if we were to act in one way or another. Even if we could predict 

the choices we will actually make, this would not tell us what we need to know: which of the available 

choices would be best for us, given our goals. Knowledge of robust regularities is crucial to us because 

we can rely upon it when reasoning hypothetically about possible ways to intervene on our 

environment. As I will now explain, this knowledge enables us to trace connections between merely 

possible actions, and the states of affairs that would result from these actions.  

When reasoning hypothetically, we distinguish between certain facts that are settled 

independently of us (e.g, the laws of physics), and facts that are contingent on our decisions. This 

determines our ‘agential possibilities’. Roughly, a state of affairs P is agentially possible from an agent’s 

perspective at a time t if, for some possible decision D which is available to her at t, she treats D → P 

(or probably P) as fixed. 

Which regularities should an agent hold fixed by default in hypothetical reasoning? One might 

have thought it is only physical necessities (that is, entailments of the physical laws). On this picture, 

what is possible for an agent is given by what the agent’s decisions (together with the agent’s specific 

knowledge about the present) can physically necessitate.36 For example, the light's turning on is 

 
35 This is merely a promissory note. There have been more rigorous attempts to characterize what makes a derivation 

‘suitable’. See, for instance, Philip Kitcher, "Explanatory Unification," Philosophy of Science, XLVIII, 4 (December 1981): 

507–31. A parallel issue has been discussed in the literature on mathematical explanation: what makes a mathematical 

proof explanatory? See Mark Steiner, "Mathematical Explanation," Philosophical Studies, XXXIV, 2 (August 1978): 135–

51; and Marc Lange, "Explanatory Proofs and Beautiful Proofs," Journal of Humanistic Mathematics, VI, 1 (January 2016): 

8–51. 

36 Since what an agent knows about the present includes memories/records, we expect such an agent ends up holding 
fixed lots of past events as well.  
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agentially possible for you because, holding fixed what you know about the present, your decision to 

flip a switch physically necessitates the light’s turning on. 

The crystallization account suggests an interesting alternative: treating physically contingent 

regularities as fixed may be advantageous, if these regularities are crystallized with respect to an agent’s 

modal neighborhood. This idea can be motivated with a few thought-experiments.  

Suppose that ‘Caffeine keeps humans awake’ holds in almost all worlds in the modal 

neighborhood of Earth-today. Consider two worlds in this modal neighborhood. In the first world, 

you are sleepy but desire to stay awake at t. The second world is almost exactly alike at t, except for 

your wanting to fall sleep. Now consider what happens if you hold fixed the caffeine regularity in 

hypothetical reasoning. In both situations you will conclude that you would stay awake if you were to 

consume caffeine, and you would fall asleep otherwise. As a result, you will choose to consume caffeine 

in the first situation, and not in the second. Since the caffeine regularity likely holds in any arbitrarily 

chosen worlds in the modal neighborhood, it is plausible that the following is true of the modal 

neighborhood: ‘If I hold fixed the caffeine regularity, then my goals to stay awake/sleep will correlate 

with my staying awake/sleeping’.  

Now consider an agent that is otherwise similar to you, but that only holds fixed physically 

necessary regularities, together with whatever she knows about the present state of the world. Could 

such an agent exploit the caffeine-awake connection on the basis of physical necessities? It depends 

on what kind of agent we have in mind. Suppose that, at the time of her decision (t), the agent knows 

all the true statements of the form ‘It is nomologically necessary that if condition X obtains at t, 

consuming caffeine shortly after t will keep me awake’. Let C be the class of all conditions that satisfy 

the above statement. If the agent knows enough about the present condition of her environment to 

determine whether a member of C obtains in her current situation, then she will be in a position to 

infer that caffeine would keep her awake. Assuming our agent is logically omniscient, this will lead her 

to drink caffeine whenever she wants to stay awake. But we – and all other physical agents – are 

importantly different from this agent. Firstly, it may be difficult for us to find out whether the enabling 

conditions C obtain in a given circumstance. Secondly, it might be difficult for us to draw the required 

inferences (if the set of enabling conditions is complex enough).  In light of this, we’re probably better 

off holding fixed ‘Caffeine keeps people awake’. 

These observations may be taken to suggest that the more true generalizations we hold fixed 

in hypothetical reasoning, the better off we are – in which case there is nothing special about 

crystallized regularities. But this is not right. Consider what happens to an agent who holds fixed 
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regularities that are too modally fragile. Imagine I get sleepy at 10pm every day, and conclude this 

regularity is robust. The night before an important deadline I would like to stay awake past 10pm, but 

I hold fixed the regularity that I take to be robust. This leads me to conclude that, regardless of what 

I do (e.g. how much caffeine I consume), I will be sleepy by 10pm. If I do this repeatedly throughout 

my life, ‘I get sleepy at 10pm’ may in fact turn out to be true – but only because, in mistaking it for a 

robust regularity, I missed the opportunity to break it. There is a clear sense in which my deliberation 

is sub-optimal here: another physically possible agent which is otherwise similar, but doesn’t treat ‘I 

will be sleepy by 10 pm’ as fixed, will likely do better than me in achieving the same goals. 

These thought-experiments motivate the following hypothesis: physical agents who hold fixed 

crystallized regularities in reasoning are (on average) better adapted to their modal neighborhoods than 

agents that hold fixed fewer or more regularities; that is, they tend to fulfill their goals in more nearby 

possible worlds. Why should an agent care about the extent to which a strategy succeeds in nearby 

worlds? Because, plausibly, the extent to which it succeeds in nearby worlds typically coincides with 

the extent to which it succeeds in the actual world. A strategy is unlikely to systematically fulfill one’s 

goals in one’s home world without doing so throughout one’s modal neighborhood.37 

It is thus possible that agents in general need to accomplish the following feat: develop 

cognitive procedures that incrementally uncover the most efficient summaries of the modal 

neighborhoods that they inhabit. If so, then to better understand the connections between robustness 

and other central aspects of our theorizing (explanation, prediction, hypothetical/counterfactual 

reasoning, controlled interventions…), we should be trying to understand how each of these cognitive 

activities fits within an overall strategy for solving the above problem, given the constraints that 

physical systems are subject to.  

 

I have offered foundationalists three reasons to think that robustness coincides with crystallization. 

Firstly, this view identifies a physical basis for the accidental/non-accidental distinction that we find 

in the special sciences, where many regularities are treated as having a kind of natural necessity, despite 

their physical contingency (§3.1). Secondly, the crystallization account vindicates distinctions in 

 
37 One might think that the crystallization account needs a claim of this sort anyway: if actual frequencies didn’t 

typically align with frequencies throughout the modal neighborhood, it is hard to see how we could get evidence for 

crystallization statements on the basis of actual frequencies. By ‘typical’ I have in mind something like high physical 

probability: P is typical if and only if it is probable according to any probability distribution that is reasonable by the 

lights of physics. 
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explanatory status between regularities that are alike in their modal strength, by giving simplicity in 

higher-level vocabularies a central role (§3.2). Thirdly, the account promises to shed light on the 

question: why do we bother categorizing some regularities as ‘robust’? One reason is that these 

regularities form a system that we can rely upon to carry out tractable inferences in deliberative 

contexts (§3.3).  

 

IV. COMPARISONS 

 

In the rest of the paper, I will discuss how the crystallization account relates to two approaches to 

robustness that appear in the literature. The first is a contemporary version of the reductionist 

tradition, which goes back to Putnam and Oppenheim (1948); the second takes robustness to be a 

form of counterfactual stability. I will argue that both are compatible with, and usefully supplemented 

by, the notion of crystallization. 

 

IV.1 The Mentaculus. As I explained in §2, my preferred version of the crystallization account assumes 

that the physical lawbook includes, alongside the dynamical laws, a law stating that the universe began 

in a very low entropy state (the ‘Past Hypothesis’). Without it, I said, the modal neighborhood would 

be plagued by anti-entropic worlds, and many familiar time-asymmetric generalizations would not turn 

out to be crystallized.  

Albert and Loewer have argued that the Past Hypothesis, together with a uniform probability 

distribution over all initial micro-conditions that realize it, gives us the foundation for all of science.38 

Those who are sympathetic to their view may wonder why, having taken the Past Hypothesis on board, 

I need the notion of crystallization at all. I will argue, however, that Albert and Loewer should welcome 

the notion of crystallization I’m providing, since it complements their account of the physical basis for 

special science theorizing.   

Let us grant that the Past Hypothesis, together with a probability distribution over initial 

conditions, is in fact sufficient to derive probabilistic versions of all thermodynamic generalizations 

(as Albert has argued).39 Even granting this, we’ll probably still need to appeal to theoretical virtues to 

prevent disjunctive/gruesome and uninformative statements counting as robust. But do we need the 

 
38 See Albert, op. cit. and Loewer, op cit.  

39 Ibid.  



 27 

notion of the modal neighborhood at all? Why not say that the robust regularities are those that feature 

in the best system of all physically possible worlds?  

The importance of the notion of the modal neighborhood can be made vivid with an example. 

Consider some hypothesis about brain lateralization in chimpanzees: ‘the left hemisphere of a 

chimpanzee’s brain is more active than the right hemisphere during task T’. Neuroscience has 

proceeded under the assumption that such regularities can be robust. But presumably, those left/right 

asymmetries would not have their basis in the laws of physics, whether these laws include the Past 

Hypothesis or not. Such asymmetries depend on the chimpanzee’s evolutionary history, which could 

have just as easily gone a different way. Given this, brain lateralization hypotheses could not feature in 

the best system of all physically possible worlds.  

Albert would say that the left-hemisphere statement is highly likely (if true), but only once we 

conditionalize on some historical event which led to the left-hemisphere regularity. I agree, but I 

require an account of the rules for conditionalizing in this way. I can cook up all sorts of propositions 

on which to conditionalize. If the laws are deterministic, then for any event e there will be true 

propositions P about the past such that Pr (e|P) = 1 according to Albert’s lawbook. But this doesn’t 

show that the event was non-accidental, explanatory, inductively learnable… 

What I’m providing is a principled way to meet the above requirement. The interesting 

background conditions (the ones that we tend to implicitly ‘conditionalize on’) are not simply all those 

that figure as antecedents of nomologically necessary statements. They are ‘crystallization conditions’: 

stable background conditions which – together with the laws – sustain the regularities that are 

crystallized within the region in question. 

 

IV.2 Counterfactual Stability Accounts. The idea that robustness is a form of counterfactual stability 

features prominently in the literature, and it was an important source of inspiration for my account.40 

I would like to end by explaining how my account relates to this proposal. 

 
40 Sandra D. Mitchell, "Dimensions of Scientific Law," op. cit., argues that laws are less contingent than mere accidents, 

because they would hold under a wider range of background conditions. James Woodward and Christopher 

Hitchcock, "Explanatory Generalizations, Part I: A Counterfactual Account," Nous, XXXVII, 1 (March 2003): 1–24, 

defend the idea that regularities are robust if and only if they would remain invariant under certain kinds of 

interventions. In a similar vein, Michael Strevens, "The Explanatory Role of Irreducible Properties." Noûs, XLVI, 4 

(December 2010): 754–80), argues that ‘All ravens are black’ has a special nomic status despite its contingency, due 

to the ‘physical inertia’ of the underlying coloration mechanism (which he cashes out in terms of counterfactuals). 

See also: Michael Strevens, "Physically contingent laws and counterfactual support," op. cit. 
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Counterfactual accounts of robustness share the following schematic form:  

 

G is robust only if for all/many/most relevant counterfactual antecedents q, q > G is accurate. 

 

For reasons I have already discussed, satisfying a counterfactual stability condition of this sort cannot 

suffice for robustness: gruesome regularities can be as stable as physical laws, without thereby attaining 

the status of robust regularities. Nonetheless, I think counterfactual stability accounts identify an 

important necessary condition for robustness, which sets them apart from mere accidents. In what 

follows, I explain how my account vindicates this idea.  

Accuracy throughout the modal neighborhood is closely related to a notion of counterfactual 

stability, which I will call ‘physical stability’. To be physically stable relative to R just is to be stable 

under all ‘relevantR’ physical counterfactuals – where a counterfactual is relevantR iff its antecedent 

stipulates a small enough change to the state of the world (at some time in R). More precisely:  

 

A generalization G is physically stable relative to R, w =def  

For any time t in R, and any (total) physical state s that is similar enough to w’s (total) 

physical state at t:  

It is true at w that (s obtains at t > G is true in R).  

 

In the above condition, ‘similar’ should be understood in terms of a distance metric on the fundamental 

state-space (as explained in §2), and the conditional ‘>’ should be understood in a technical sense:  

 

s obtains at t  >  P  =def   

P holds in all the physically possible world(s) whose total physical state at t is s.  

 

 Call these conditionals ‘physical counterfactuals’. The antecedent of a physical counterfactual takes us 

to a class of physically possible worlds: worlds whose state at some time t is as that antecedent 

stipulates. If the consequent holds where that antecedent takes us, the counterfactual is true. 41 (When 

dealing with  indeterministic laws, we could weaken the requirement that all the antecedent worlds to 

 
41 See Maudlin, op cit., for an account of counterfactuals along these lines.  
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be consequent worlds. It may be enough that the set of antecedent-worlds in which the consequent 

doesn’t hold have measure zero, or close to zero). 

Since no relevantR physical counterfactual takes us outside of R’s modal neighborhood, perfect 

accuracy throughout R’s neighborhood suffices for physical stability relative to R. Conversely, all the 

worlds in R’s neighborhood are reached by some relevantR physical counterfactual. This means that 

stability under all relevantR physical counterfactuals suffices for perfect accuracy throughout this 

neighborhood. We can conclude that a regularity is physically stable relative to R if and only if it is 

perfectly accurate throughout R’s neighborhood.  

The connection between physical stability and accuracy is less straightforward once we 

consider generalizations that are less than perfectly accurate. We might expect that high accuracy 

almost everywhere in the modal neighborhood would correspond to a slightly weakened physical 

stability condition, such as: 

 

A generalization G is highly physically stable relative to R, w=def 

For almost every antecedent of the form ‘s is the state at t’, where t is some time in R, 

and s is a total physical state similar enough to w’s physical state at t, then: 

 

           It is true at w that ( s obtains at t  > G is highly accurate in R).42 

 

However, there is no logical entailment from high accuracy in the modal neighborhood to high physical 

stability (or vice versa). This is because there needn’t be an even measure-theoretic correspondence 

between sets of relevantR counterfactual antecedents, and the sets of worlds they reach. A 

generalization G may be physically unstable, despite being highly accurate in almost all worlds in the 

modal neighborhood, if there are small islands of G-offending worlds are reached by sufficiently many 

counterfactual antecedents. Nonetheless, I see no reason to think that our modal neighborhoods will 

contain many such ‘hyper-accessible’ (or ‘hyper-inaccessible’) islands. If so, it is safe to assume that – 

in worlds like ours – only the highly physically stable regularities relative to R are highly accurate 

throughout R’s modal neighborhood. Thus, any generalization that is low in physical stability is likely 

not an axiom (or theorem) of the relevant modal neighborhood’s best summary. This vindicates the 

intuitive evidential connection between physical instability and accidentality. 

 
42 ‘Almost every time’ will be cashed out in terms of a standard measure on temporal intervals.  
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I defined the notion of physical stability in terms of ‘micro-antecedents’ – that is, antecedents 

specifying total micro-conditions for the world at some time. This is one important respect in which 

it differs from stability conditions on robustness proposed in the literature, which take into 

consideration antecedents formulated in the macro-language of the generalization or scientific field of 

interest. For example, Marc Lange, Christopher Hitchcock, and James Woodward have all suggested 

that special sciences treat different classes of antecedents as relevant, depending on the ‘level’ at which 

they carve reality.43 In what follows, I will explain how this kind of ‘macro-stability’ relates to accuracy 

(and physical stability) and I will argue that the crystallization account vindicates the claim that failures 

of macro-stability are indicative of accidentality. 

For concreteness, I will focus on one particular conception of macro-stability, proposed by 

Hitchcock and Woodward.44 They start from the idea that all special science generalizations are 

mathematical expressions that relate non-fundamental ‘variables’. A variable is a syntactic entity that 

represents a determinable property such as temperature or pressure; its values are numerical entities 

that represent the corresponding determinates. Hitchcock and Woodward propose that a 

generalization G is robust only if it is stable under counterfactual antecedents that set the variables in 

G to alternative values. For example, the ideal gas law should be stable under counterfactual 

antecedents that specify alternative distributions of pressures, temperatures, and volumes; economic 

generalizations should be stable under antecedents that change prices, supply, and demand, and so on.  

For this kind of proposal to work, we must restrict our attention to ‘nearby’ values of the 

macro-variables in question. As Hitchcock and Woodward acknowledge, all generalizations break 

under ‘extreme’ settings of the variables in question, and extreme values are likely just those that are 

only realized in physically distant worlds.45 Thus, their notion of stability can be characterized as 

follows:  

   

A generalization G is macro-stable relative to R, w=def  

For every variable X  in G, every macro-object a which instantiates some value of X (in R), 

and (almost) every number ε sufficiently close to 0:  

 
43 See Marc Lange, "The Autonomy of Functional Biology: A Reply to Rosenberg," Biology & Philosophy, XIX, 1 

(January 2004): 93–109; and James Woodward and Christopher Hitchcock, op cit.  

44 Ibid.  
45 Ibid. 
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It is true at w that (a’s X -value is greater/smaller by ε units >  G would be highly accurate).   

 

In order to understand the connections between macro-stability, physical stability and crystallization, 

we need a more general proposal for evaluating counterfactuals than the one outlined before. I will use 

a Lewis/Stalnaker semantics, with some minor variations: roughly, A >C is true relative to R iff C holds 

in almost all the nearestR worlds where A obtains.46 I will make one crucial assumption about the 

nearness relation, namely that all the worlds in the modal neighborhood of R are nearerR than any world 

outside of it. I do not assume, however, that these assumptions will carry over to a semantic account 

of natural language counterfactuals. It is fine for our purposes if ‘>’ does not capture all speaker 

intuitions about counterfactuals, so long as it identifies an important relation between propositions that 

our counterfactual talk tracks (in certain contexts). 

Several proponents of macro-stability would reject the idea that counterfactuals reduce to 

notions like similarity and laws (as I will be supposing).47 Lange and Woodward are happy to take 

counterfactual truths as primitive (that is, not in need of further analysis). But my goal (unlike theirs) is 

to understand robustness from a foundationalist perspective. In this context, primitivism about 

counterfactuals is unattractive.48 Despite these differences between my project and theirs, I think that 

it will be instructive to compare the two ways of understanding stability, bracketing any differences in 

how we’re understanding the counterfactual conditional ‘>’.  

Suppose we know that a generalization G is accurate throughout some modal neighborhood 

(of Earth throughout 2020, say). Can we conclude that it is also macro-stable relative to this region? I 

think we can. Think of how vast the corresponding modal neighborhood will be. Consider making 

small changes to the actual world on January 1st. You will find worlds where the weather on March 2nd 

is different, worlds where my coffee spills on October 30th, worlds where ten more ravens mate on 

Halloween, and worlds where the supply of shoes on Christmas day is 10% higher. Differences amplify 

as time goes by, yielding great variety in the modal neighborhood. Thus, we should expect the modal 

neighborhood to include worlds that differ from ours with respect to every macro-variable. We should 

 
46 Requiring that the consequent hold in all nearby worlds would simplify the account, but the corresponding stability 

conditions would end up being too demanding (especially given that our modal neighborhoods contains lots of tiny 

islands of anti-thermodynamic worlds).    

47 A notable exception is Michael Strevens, who employs a similarity-based non-backtracking reduction of 

counterfactuals. See Strevens,"Physically contingent laws and counterfactual support," op. cit. 

48 This is not, of course, a criticism of authors that take counterfactuals as primitive; these authors are not engaged 
in the same foundationalist project that I am. 
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expect, then, that almost all the relevant macro-antecedents will be true somewhere in the modal 

neighborhood. Since our robust generalization G approximately holds in almost all worlds of the modal 

neighborhood, relevant macro-antecedents will likely take us to worlds where G approximately holds.49  

The above line of reasoning is far from a rigorous proof. However, I think it makes it credible 

that generalizations which are accurate across some region’s modal neighborhood are also macro-stable 

within that region. This in turn means that that if a generalization fails to be macro-stable in some 

region, then it is unlikely to feature in the best system for that region (either as axiom or theorem).50 If 

this is correct, then the crystallization account vindicates, from a foundationalist perspective, the guiding 

idea behind counterfactual stability accounts of robustness: counterfactual fragility is a clear sign of 

accidentality.    

 

CONCLUSION 

 

The special sciences treat certain higher-level generalizations as nomically elite or ‘robust’. To a first 

approximation, those generalizations do not seem privileged from the perspective of physics:  they are 

physically contingent, and look highly complex when translated into physical vocabulary. Some 

philosophers take this to indicate autonomy from physics: they conclude that higher-level regularities 

do ‘tnot inherit their robustness from the laws of physics. However, the crystallization account 

demonstrates how these marks of autonomy may be reconciled with foundationalism. On this account, 

robust regularities have a privileged status in virtue of efficiently summarizing patterns throughout our 

‘modal neighborhoods’. 

The idea that much of our scientific theorizing aims at summarizing our modal neighborhoods 

provides a new framework for conceptualizing the connections between robustness, counterfactuals, 

explanation, and induction. This paper has only begun to explore these connections, conjecturing that 

 
49 Without a more precise proposal for counting macro-variable antecedents, it will not be possible to verify that this 

last step is licensed. But I hope that the prima facie plausibility of this reasoning suffices to illuminate the connection 

between the notions in question.  

50 Macro-stability does not suffice for accuracy throughout the modal neighborhood. Take a generalization G, which 

is macro-stable relative to R. For each variable X in G, mark the worlds in R’s modal neighborhood that are the 

closest X-variants (for each object a). Given G’s macro-stability, it will be accurate at all the marked worlds. But it 

needn’t be accurate at unmarked worlds. And unless our set of variables happens to be very comprehensive, these 

unmarked worlds will occupy a significant proportion of the modal neighborhood.  
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we rely on these summaries to reason counterfactually/hypothetically about nearby possibilities (for 

example, in deliberation). Future work should evaluate this conjecture more systematically, and also 

explore how modal neighborhoods connect to explanation and prediction. Why is our knowledge of 

the future so deeply intertwined with our knowledge of the modal neighborhood? How do our 

attempts to explain observable patterns in the actual world contribute to the construction of accurate 

summaries for modal neighborhoods of various sizes? Are there explanatory connections between 

summaries for various neighborhoods? If so, how do we discover them? 

 


