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Causal models provide us with aformal tool for representing the networks
of determination in which causes and effects are embedded. They tell us
how some token features of the world—represented in the model with
variables—determine others. They tell us whether one variable deter-
mines another along a single path or along multiple paths. They tell us
whether two variables determine a third, and, if so, whether they do so
along independentor intersecting paths. And it has been hoped that they
can also tell us whether one variable value is a token cause of another.! To
this end, anumber of authors have developed theories of token causation
in the causal modeling framework (e.g., Halpern and Pearl 2001, 2005;
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M. Joyce, Harvey Lederman, L. A. Paul, Brian Weatherson, Mark Wilson, and James
Woodward—as well as audiences at the University of North Carolina, Chapel Hill; the
Center for the Philosophy of Science at the University of Pittsburgh; and the Causal and
Explanatory Reasoning conference at Venice International University. I am especially
indebted to two anonymous reviewers for this journal, whose generous feedback and
watchful eyes helped make this paper much better than it would otherwise have been.

1. Token causation is sometimes called ‘singular causation’ or ‘actual causation’.
Token causal relations are described by token causal claims—sentences of the form “c’s
Fing caused eto G” or “¢’s Ising was a cause of ¢s G-ing,” where ¢’s IYing and ¢’s Ging are
token events (e.g., “Chris’s drinking was a cause of his esophageal cancer”). These are to
be contrasted with type or general causal claims like “Drinking causes esophageal cancer.”
So too should they be contrasted with the relations of causal determination between
variables—the relations represented with directed edges in a causal graph. (Looking
ahead to section 1, in figure 1, whether B fires causally determines whether E fires, but
B’s failure to fire is not a token cause of E’s firing.) Throughout, “cause” should be
understood to mean “token cause.”
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Hitchcock 2001, 2007a; Woodward 2003; Menzies 2004, 2006; Hall 2007;
Halpern 2008, 2016; Beckers and Vennekens 2017, 2018; Weslake, forth-
coming; Andreas and Glinther 2018, 2020). Lots of good work has been
done on this front, but most of the theories developed to date have an
awkward consequence: adding or removing an inessential variable from a
model will lead these theories to revise their verdicts about whether two
variable values are causally related or not.? Attend to an additional, ines-
sential variable lying along a path from C to E, and these theories will
change their mind about whether C caused E. Attend to an additional,
inessential variable feeding into a path leading from C to E, and these
theories will likewise change their minds about whether C caused E.®

I believe that this should concern us. In several instances, these
theories are only able to agree with intuition through a judicious choice
of which variables to include in the model. For just one example: in
section 1.1 below, we’ll encounter two systems which appear to differ
causally, but which may be modeled with isomorphic variables and
equations. Nonetheless, Christopher Hitchcock (2001) treats them dif-
ferently by including an inessential variable in his model of one system
while omitting the corresponding variable from his model of the other.
There is a serious worry that, in the absence of some more general guid-
ance about when variables can be ignored, and when not, ad hoc
decisions can be used to effectively shield a theory from refutation. A
theory whose causal verdicts don’t change as inessential variables are
added or removed—a model-invariant theory—would protect us from
this kind of special pleading. Such a theory would have the added virtue
of making it easier to determine whether C caused E. With such a theory,
we needn’t consider all possible correct causal models, nor decide which
is most appropriate or apt for the present context; we need only check
whether C caused FE in a single correct model.

Below, I will provide a model-invariant theory of causation.
Along the way, we’ll see reason to think that an adequate theory of
causation must distinguish between states which are normal, default, or
inertial, and events which are abnormal, deviant departures therefrom

2. The theory of Sander Beckers and Joost Vennekens (2017, 2018) is a notable
exception—modulo some finicky issues related to their ‘timings’. Unfortunately, this
theory says that a preemptive overdeterminer (see section 4) is not a cause. Beckers
and Vennekens recognize and embrace this consequence of their theory, but it is not
one that I am willing to endorse.

3. To understand why these theories are model-variant, see Gallow, n.d. I will get
more precise about the term ‘inessential’ in section 2 below.
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(section 1.1). This is striking even after you’ve been persuaded that it is
true. Why should a distinction between default and deviant behavior play
arole in our causal thoughtand talk? The theory developed here suggests
an answer. In rough outline, the theory says that C caused E whenever
both Cand E are deviant or noninertial events, and there is an uninter-
rupted process which transmits C's deviancy to E. Thatis, according to this
theory, a cause is something which transmits aberrational behavior to its
effect; and, if that is what a cause is, then it is no surprise to find the
distinction between the default and the deviant, the normal and the
abnormal, or the inertial and the noninertial showing up in our theoriz-
ing about causation.

In section 1, I will introduce causal models, show how they can be
used to provide a semantics for causal counterfactual conditionals, and
explain why I’ve been persuaded that these models must include infor-
mation about which variable values are more default, normal, or inertial
than which others. Then, in section 2, I will explain more carefully what I
mean when I call a theory of causation formulated in terms of these causal
models model-invariant. Sections 3—5 develop the notion of a causal net-
work. This is a formal characterization of what I called above “an uninter-
rupted process which transmits C’s deviancy to E.” Causal networks are
the heart of my theory of causation, and they are model-invariant. In
section 6.1, I will give some further motivation for thinking of causal
networks as transmitting deviancy from cause to effect. In section 6.2, I
will give a precise statement of the theory and illustrate it with some
further applications.

A few words of forewarning: in what follows, I will for the most part
confine my attention to some simple ‘neuron systems’ (see section 1
below) —though, along the way, I'll provide some ‘real world’ cases
which exemplify similar causal structures. All of these systems will be
deterministic. This narrow focus will allow me to sidestep some thorny
questions—for instance, which kinds of variables can be included in a
causal model, when a system of equations is correct, and when one
variable value is more or less default, normal, or inertial than another.
By focusing on neuron systems, I will be able to get by with a small number
of relatively uncontroversial assumptions about these contentious ques-
tions. Any complete theory of causation must say more about these issues
than I will say here—just as it must be extended to cover indeterministic

4. T've said a bit about this in Gallow 2016, and I’ll say a bit more in section 2 below,
though there remains more to be said.
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systems. Accordingly, the story I will tell here is an important part of a full
theory of causation, but it is not yet a complete theory.

1. Causal Models

AsT'll be using the term here,” a causal model consists of five components:
a collection of exogenous variables,® U; an assignment of values to those
variables, u; a collection of endogenous variables, V; a system of structural
equations, one equation for each endogenous variable in V; and a speci-
fication of which of a variable’s values are more normal, typical, inertial, or
default than which others.”

CAUSAL MODELS

A causal model M = (U,u, V,E, =) is a 5-tuple of

(a) An m-tuple, U= (Uy, U, ..., U,), of exogenous variables;

(b) An assignment of values, u = (uy, s, ..., uy,), to U;

(c) An n-tuple, V= (V;, Vy,..., V,), of endogenous variables;

(d) A system of structural equations, E = (¢, o, ..., $,), one equation for
each endogenous variable V; € V; and

(e) A specification, =, of which values of each variable in U U Vare more
default, normal, typical, or inertial than which others.

To see how a causal model represents structures of causal deter-
mination, consider the Lewisian system of neurons shown in figure 1.
Here’s how to read the diagram in figure 1: for each time listed at the
bottom, the neurons above it can either fire or not fire at that time. If a

5. This terminology is slightly idiosyncratic. Many authors do not include either =
or u in their definition of ‘causal model’.

6. As I understand them, variables are functions from some domain to the real
line—in my view, the domain is a set of possible spacetime regions. So, as I understand
them, variables tell you what their possible values are (they are just the real numbers in the
image of the function). The reader may think about variables differently; but they should
ensure that a causal model tells us which values each variable may take on.

7. Notation: variables will be denoted with uppercase italic letters (A, B, C,...),
while their values will be denoted with the corresponding lowercase letters (a, b, ¢, .. .).
Tuples will be indicated with boldface. I will use uppercase for a tuple of variables and
lowercase for a tuple of their values. The Greek letter ¢, subscripted with a variable, will
stand for a function, and I will often use just ‘¢’ to stand for an entire structural equation
like V :=¢ (X, Y, Z). Throughout, I will apply set-theoretic notation to tuples of variables.
Thus, U U Visa tuple containing all and only the variables in either U or V, V\Xis a tuple
containing all and only the variables in V, except for those in X, and so on. There will in
general be manysuch tuples, depending upon an arbitrary choice of order. It won’t matter
which of these an expression like ‘U U V’ denotes. In sections 3—6, I will use calligraphic
letters (P, N') to stand for sets of directed edges.
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Ui (40 E=BvVD
w : (1, 1) E,:| D:=
V, : (B,D,E) B :=AA-C

n n 13

Figure 1. On the left, the neuron system Preemptive Overdetermination. On the right, the
canonical causal model, M;, of this neuron system. (For all variables, 0 is default and 1 is
deviant.)

neuron actually fires at its designated time, then it is colored gray. Oth-
erwise, it is colored white. The arrows represent stimulatory connections
between neurons. If the neuron at the tail of the arrow fires at its desig-
nated time, then, ceteris paribus, the neuron at the head will fire at its
designated time. Thus, if either Bor Din figure 1 fires at ¢, then E will fire
at 5. The circle-headed lines represent inhibitory connections between
neurons. If the neurons at their base fire, then the neurons at their head
definitely won fire. In figure 1, for instance, if C fires at ¢;, then B won’t
fire at ¢{,, no matter whether A fires or not.

Parenthetically, it is not uncommon to see diagrams like these
used to represent the causal scenarios described in vignettes—scenarios
involving rock throwings, coffee poisonings, and the like. This isnot how I
will be using them here. Rather, I will be understanding these diagrams as
representing hypothetical mechanical systems obeying the simple laws
described above. These systems consist of a small number of parts, the
neurons, with two potential states: being dormant, which is a neuron’s
inertial state, the state in which it will remain unless acted upon from
without, and firing, which a neuron will only do when another neuron
connected to it with a stimulatory connection fires.® You could think of
these diagrams as representing an appropriately connected electrical
circuit (cf. Armstrong 2004: 446), neurons in the brain, connected with
appropriate excitatory and inhibitory synapses,” or a boring possible
world containing no more than a few objects, the ‘neurons’, and gov-
erned bysimple laws of nature specifying when these neurons will and will
not fire. I’ll be using these neuron systems not as representational tools

8. Some neuron systems I introduce later on will have more potential states than
these. I will explain the additional complications then.
9. This is how Lewis thought of them (e.g., Lewis 1986: 196).
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but rather as the reality to be represented with a causal model (cf. Hitch-
cock 2007b).

To represent the neuron system shown in figure 1, we may assign a
variable to every neuron: A, B, C, D, and E. These variables take on the
value 1 if their associated neurons fire at their designated times, and take
on the value 0 if their associated neurons remain dormant at their desig-
nated times. (Thus, I use ‘A’ for both the neuron and the variable which
represents whether A fires at ¢;. Context will disambiguate.) Both Aand C
are exogenous variables—variables whose values are not causally deter-
mined by the values of the other variables in the model. Since both of
these neurons fire at ¢;, the exogenous assignment will tell us that
A= C=1. The variables B, D, and E will be endogenous—variables
whose values are causally determined by the values of other variables in
the model. The structural equations in E tell us exactly how the values of
the endogenous variables are causally determined. The equation
E: =BV D tells us, firstly, that whether E fires is causally determined by
whether B does and whether D does and, secondly, that £ will fire if and
onlyif (iff) either Bor Ddoes.! Similarly, the equation D := Ctells us that
whether D fires is causally determined by whether Cdoes, and that Dwill
fire iff C does. The structural equations, together with the exogenous
variable assignment, allow us to solve for the value of every variable in
the model. For instance, in M; (the model of the neuron system in figure
1), the structural equation B:=A A —C, together with the exogenous
assignment A= C=1, tells us that B= (. Similarly, the structural
equation D :=(, together with the exogenous assignment C= 1, tells
us that D= 1. And, finally, the structural equation E :=BV D, together
with the values B= Oand D =1, tells us that £E= 1.

Because the equations in E encode information about the direc-
tion of causal determination, we cannotrearrange D := Cto get C := D, as
we could with an ordinary equation. A structural equation V := ¢ (U) tells
us more than just that the value of Vis a function, ¢y; of the value of U. It
additionally tells us that the value of Vis causally determined by the value of
U, in a way that the value of Uis not causally determined by the value of V.
This is why we use “:=’, rather than ‘=", in structural equations.

Given a causal model, M, we may construct a causal graph which
displays the causal determination structure among the variables in the
model, as follows: if a variable U appears on the right-hand side of a

10. Notation: XA Y, XV Y, and —X are the Boolean functions min{X, Y},
max {X, Y}, and 1 — X, respectively.
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variable Vs structural equation, ¢y; then place a directed edge between U
and V, with its tail at U and its head at V; U— V. Thus, given the causal
model shown in figure 1, we may construct the following causal graph:

1 0
A——B

1 1 1

C—D——F

(Note: I have additionally decorated the graph with the values the vari-
ables take on in the model.) This graph tells us that the variables Aand C
are exogenous, that B’s value is causally determined by the values of Aand
C, that D’s value is causally determined by the value of C, and that E’s value
is causally determined by the values of Band D. While it tells us by which
other variables each endogenous variable is causally determined, the
graph on its own does not tell us kow the values of the endogenous vari-
ables are causally determined. For that information, we must look to the
structural equations in E.

It is common to use the metaphor of genealogy to describe the
causal determination relations between variables displayed in a graph.
For instance, B and D are E’s causal parents, and C’s causal children.
Similarly, B, D, and E are C’s causal descendants. Throughout, I will
assume that no variable is among its own causal descendants—that is, I
will assume that there are no causal 1oops.11 I will use ‘PA(V)’ to denote a
tuple of V’s causal parents.

Finally, our causal model should specify, for each variable, which
values of that variable are more default, inertial, or normal than which
others. In the case of the neuron system from figure 1, I will assume
that remaining dormant is the default, normal state of a neuron—it is
the state in which the neuron will remain unless it is acted upon by some
other, stimulatory neuron. And I will assume that firing is a more abnor-
mal deviation from that default, inertial state. I will assume likewise for
every other neuron system in this paper.!? The reader may be curious why

11. I make this assumption in the interests of simplicity, not out of necessity. Local
dependence (see section 4) is well defined in cyclic models; so causal networks (see
section 5) are well defined in cyclic models; so the theory of causation I'll present in
section 6 can be applied straightforwardly to cyclic models.

12. Formally, we can understand = as a function from the variables V€ U U V to a
partial pre-order over their values, =y. If v=yv", then vis no more default, normal, or
inertial than v" (cf. Halpern 2008, 2016; Halpern and Hitchcock 2015). Perhaps which
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this kind of information is included in a causal model; I’ll explain in
section 1.1 below.

1.1. Defaults and Deviancy

The neuron system shown in figure 1 gives a case of Preemptive Overdeter-
mination. There, either A’s firing or C’s firing would have been enough, on
its own, to make FE fire. Both A and C fired, so the firing of I was over-
determined. But the overdetermination is not symmetric. Though the
causal process initiated with C’s firing runs to completion, the causal
process initiated with A’s firing is preempted by C’s firing. A would have
caused I to fire, were it not for C; but, as it happens, Ais merely a backup,
would-be cause. C, on the other hand, is a genuine cause of E’s firing.
Consider the neuron system shown in figure 2. (I follow Ned Hall

.)13

[2007] in calling this neuron system a ‘short circuit’.) '* There, the neur-

on Cfires, causing Bto fire; and B’s firing threatens to make E fire. But, at
the same time that Cinitiates this threat to s dormancy, it also makes D
fire. And D’s firing prevents E from firing. So C both creates a threat to £’s

dormancy and, at the same time, neutralizes that very threat. For a case
14

with a similar causal structure, consider:
Boulder
Matthew hikes through the Scottish highlands. Above him, a large
boulder becomes dislodged and careens down the hillside. He sees the
boulder coming and jumps out of the way at the last second, narrowly
escaping death.

variable values are more inertial than which others should be relativized to the values of
some other variables in the model. Taking for granted that your food is poisoned, your
death may be inertial, even though, when we don’t take this for granted, death is an
abnormal departure from inertial behavior (cf. Halpern 2016). Perhaps we should further
distinguish variable values which are inertial from those which are deviant, saying that,
conditional on the poisoning, your death is inertial, but deviant. I'm sympathetic to these
thoughts; but I’ll put them aside for the nonce. We will be able to say many interesting
things without worrying too much about the particulars of the default/deviant
distinction.

13. See also Lewis 2004: 97-99, in which the same structure is called an inert network.

14. This case is attributed to an early draft of Hall 2004 by Hitchcock (2001). In
assuming that Boulder and Short Circuit have similar causal structures, I am in part assum-
ing that the boulder’s fall is a deviant, noninertial event, and that Matthew’s surviving is a
default, inertial state.
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Figure 2. Short Circuit.

The boulder’s becoming dislodged creates a threat to Matthew’s life.
However, at the same time that it creates this threat, it also alerts him to
its presence, causing him to jump out of the way. So the boulder both
creates a threat to Matthew’s life and, at the same time, neutralizes that
very threat. I take it that the boulder’s becoming dislodged did not cause
Matthew to survive—and I take it that C’s firing did not cause E to remain
dormant in the neuron system from figure 2.

As Hall (2007) notes, we may write down a system of structural
equations for Short Circuit which is isomorphic to the model of Preemptive
Overdetermination from figure 1. Let A be a variable which takes on the
value 1 if the neuron A doesn’t fire, and takes on the value 0 if it does.
Similarly, let B and E be variables which take the value 1 if their associated
neurons don’t fire, and take on the value 0 if they do. And let Cand D be
variables which take on the value 1 if their associated neurons fire and
take on the value 0 if they don’t. Then, the following system of equations
will correctly describe the causal determination structure among these
variables.

N 0
E=BvD A
D:=C

= = I ] I
B:=AAN-C C/D T

E won't fire just in case either B doesn’t fire or D does; D will fire just in
case Cdoes; and B wont fire just in case neither A nor Cdo.

These are isomorphic to the equations we wrote down for the case
of Preemptive Overdetermination. Moreover, the exogenous variables take on
precisely the same values. In Preemptive Overdetermination, C's firing caused
E to fire (thatis, C=1 caused E = 1). But, in Short Circuit, Cs firing did
not cause E to not fire (thatis, C = 1 did not cause E= 1). So, if we wish to
use causal models to determine which variable values caused which other
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variable values, then we will need to know more than a true system of
structural equations and an assignment of values to the exogenous vari-
ables is capable of telling us.

It is natural to think of the dormancy of a neuron as a kind of
default, normal, or inertial state. It is the state in which the neuron will
remain unlessitis acted upon by some other, stimulatory neuron. And the
eventof aneuron’s firing is a deviation from that default, normal, inertial
state. Several authors have thought that this distinction, between default,
normal, or inertial states and events which are abnormal, noninertial devi-
ations therefrom, must be incorporated into a theory of causation.'® And
appealing to this distinction allows us to distinguish Preemptive Overdeter-
mination from Short Circuit. For, in our model of Preemptive Overdetermina-
tion, A=1, B=1, and E =1 stand for the deviant, abnormal, noninertial
events of neurons firing; while, in our model of Short Circuat, A= 1, B= 1,
and E = 1 stand for the default, normal, inertial states of neurons remain-
ing dormant. It is for this reason that a causal model includes =, which
tells us which variable values are more deviant, abnormal, or noninertial
than which others.

No theory of causation incorporating this kind of information is
complete until it provides an independent characterization of which vari-
able values are more or less default than which others.'® However, insofar
as we keep our focus on simple neuron systems, the only assumption I will
need is that aneuron’s remaining dormant is more default than its firing.
When additional assumptions about the deviancy of a variable’s values are
needed, I will explicitly state them.

The focus on simple neuron systems will also allow me to get by
with just one, relatively weak, assumption about when a causal model is
correct. To understand this assumption, return to the neuron system
shown in figure 1. To construct the causal model M; from this neuron
system, we assigned a variable to every neuron, with a value of 1 standing
for the neuron firing at its designated time, and a value of 0 standing for
the neuron remaining dormant at that time. The variables for the neur-
ons on the far left-hand side—those without any stimulatory or inhibitory
connections coming into them—were made exogenous, and assigned

15. See in particular Kahneman and Miller 1986; Thomson 2003; Maudlin 2004;
McGrath 2005; Hall 2007; Hitchcock 2007a; Halpern 2008, 2016; Hitchcock and Knobe
2009; Paul and Hall 2013; Halpern and Hitchcock 2015.

16. For some attempts, see Kahneman and Miller 1986; Maudlin 2004; McGrath
2005; Hall 2007; Hitchcock 2007a; Hitchcock and Knobe 2009; Wolff 2016.
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the values corresponding to the actual state of their associated neurons.
We then wrote down equations describing how the state of each endogen-
ous neuron is directly causally determined by the other neurons in the
system, and we assumed that firing is a more deviant state of a neuron
than remaining dormant. Let’s call the causal model that we construct in
this way from a given neuron system the canonical model of that neuron
system. Then, the assumption I'll need about model correctness going
forward is this: the canonical causal model of any neuron system is
correct.

1.2. Counterfactual Causal Models

Given a causal model M = (U,u,V,E, =), with some tuple of variables
A C U U YV, we may construct a counterfactual model, in which the vari-
ables in A have been intervened upon to set their values to a, as follows: we
remove any endogenous variables in A from the endogenous variables, V,
and add them to the exogenous variables, U. Next, we remove the struc-
tural equations of any endogenous variables in A from the system of
structural equations, E, and change the exogenous assignment u so
that it assigns the values in a to the variables in A. The information in
= will remain unchanged.

COUNTERFACTUAL CAUSAL MODEL

Given a causal model M = (U,u,V,E, =), including the variables in A,

and given the assignment of values a to A, the counterfactual model
M[A—a] = (U u",V E*,=")

is the model such that:

() U"=UUA

(b)u* =u + a'”

() V' =V\A
(d) E" =E\(¢4| AEA)
() =" ==

For instance, figure 3 displays the counterfactual model M;[D — 0], in
which we have intervened to set D’s value to 0. Notice that, in this model, it
is no longer the case that I)’s value is causally determined by C’s. Rather, D
has been ‘exogenized’, and it has been given the exogenous assignment

17. Here, I use ‘u + a’ to refer to the result of adding the assignment from a to u (if
the variable from A is not already exogenous) or revising the assignment u to match a (if
the variable from A is already exogenous).
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A—B Ui : (4.CD) e BuD
1/()\U} u ¢ (L1,0) Ei:(B;=AAﬁC)
C D——F Vi : (B,E)

Figure 3. On the right, the counterfactual model M;[D — 0] (for all variables, 0 is
default and 1 is deviant). On the left, its associated causal graph.

0. In this new model, when we solve for the values of the variables as
before, we find that £= 0.

We can use these counterfactual models to provide a semantics for
causal counterfactual conditionals.!® According to this semantics, a caus-
al counterfactual “Had A taken on the values a, then it would have been
that C” (where C is any Boolean function of variable values) is true in a
causal model M just in case C is true in the counterfactual model in which
you’ve intervened to set the variables in A to the values a, M[A — a].

CAUSAL COUNTERFACTUALS

If Cis a proposition about the values of the variables in a causal model M,
and M contains the variables in A, then the causal counterfactual A = a
[} Cis true in M iff C is true in the counterfactual model M[A — a],19

MEFA=allC&=M[A—a]FC

Thus, because E = 0 is true in the counterfactual model M; [D — 0], the
counterfactual D= 0 [J— E= 0 is true in the model M;.

2. Model Invariance

Like any other vehicle of representation, a causal model may be appraised
for accuracy. The model tells us that the world is a certain way, and what it
tells us could be either true or false. In the former case, the model is
correct. In the latter case, it is incorrect. A causal model which says that
the rain is causally determined by the state of my umbrellais not correct; it
gets the causal structure of the world backwards. Among the correct caus-
al models, some are more detailed, some less so. One correct model tells
us that whether the match lights is causally determined by whether it is
struck. Another tells us that whether the match lights is causally deter-

18. For more on this semantics, see Galles and Pearl 1998; Briggs 2012; Huber 2013.

19. T use “M E S” for “the sentence S is true in the model M.” For sentences of the
form “V = v,” and Boolean functions of these sentences, the definition of truth in a model
is just what you would expect.
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mined both by whether it is struck and whether there is oxygen present.
Both models tell us true things about the world’s causal structure, though
the second tells us strictly more. Other correct causal models may tell us
which variables causally determine whether the match is struck, which are
causally determined by whether the match is lit, and which are causally
intermediate between the match’s striking and its lighting.

If we wish to theorize about causation in terms of causal models,
then it is important for us to distinguish between correct and incorrect
models; for it is only the verdicts issued about correct models which are
commitments of our theory. Without some way of distinguishing correct
models from incorrect models, a theory of causation would tell us noth-
ing at all about which variable values are token causes of which others.

For my purposes, I won’t need to supply a complete account of
when a causal model is correct. I will only need to endorse three, rather
weak, conditions on the correctness of a causal model (namely, that the
canonical causal model of a neuron system is correct, and the principles
Exogenous and Endogenous Removal, to be introduced below). How-
ever, just to orient the reader, let me say a few things here about what I
think it takes for a causal model to represent the world correctly.

On myview, in order to be correct, a causal model must entail only
true counterfactuals about the values of the variables appearing in the
model. If a causal model entails a false counterfactual, then the model is
incorrect. But entailing only true counterfactuals is not sufficient for a
model being correct; some incorrect models entail only true counterfac-
tuals. To appreciate this, return to the case of Preemptive Overdetermination
from figure 1, and consider a model which contains only the variables C
and E, both of which are exogenous and take on the value 1. This model
tells us, truly, that s firing is counterfactually independent of C’s firing,
and that C’s firing is counterfactually independent of E’s. But it also tells
us, falsely, that whether I fires is causallyindependent of whether Cdoes.
So this model is not correct, even though it entails only true counterfac-
tuals. Or consider a model of Preemptive Overdetermination which contains
only the variables A, C, and E, where Aand C are exogenous and both take
on the value 1, and a single structural equation which tells us that E fires
iff either Aor Cdoes: E:=A V C. This model will entail only true counter-
factuals. However, in this model, the variables A and Care perfectly sym-
metric. So any theory of causation presented with this model will tell us
that A= 1 caused E= 1iff C=1 caused E= 1. Since C= 1 caused E=1
and A = 1 did not, this model cannot be correct. My diagnosis is that this
too-simple model tells us, falsely, that A and C determine the value of £
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along nonintersecting paths. So, on my view, causal models don’t just
represent patterns of counterfactual dependence between variable
values—they also tell us something about the paths by which variables
causally determine the values of their descendants.?’

In general, my view is that a causal model tells us how each of the
values of each endogenous variable, V € V, is causally determined by the
values of V’s ancestors in the model—in particular, whether they are
determined by a single path or multiple paths, and whether they are
determined by independent or intersecting paths—and it tells us that
those values are not causally determined by V's nonancestors. From these
facts, we can determine which variable values counterfactually depend
upon which others, as described in section 1.2. So, if a model entails false
counterfactuals, then the model must have told us something false. But
the model tells us strictly more than these counterfactuals do. (I will
expand upon this view when discussing some examples below.)

2.1. Exogenous Removal

In order to be correct, a causal model needn’t include a variable for every
factor which is potentially causally relevant. The model which says that
whether the match lights is causally determined by whether it is struck
and whether oxygen is presentis correct. But, so long as oxygen ispresent,
the variable for oxygen is not needed. We could remove it, and the causal
model left behind—the one which tells us that whether the match lights
is causally determined by whether it is struck—would be correct, also.
(This model no longer tells us whether there’s oxygen present, nor
whether the presence of oxygen causally determines the lighting of the
match, but no model will tell us everything about the world’s causal struc-
ture, just as no map will tell us everything about where things are located.
A map of London is not incorrect simply because it doesn’t tell us where
Sabeen’s flat and the Eiffel tower are located. Likewise, a causal model is
not incorrect simply because it doesn’t tell us something about the values
of omitted variables.) Or consider the neuron system displayed in
figure 4. The canonical model of this neuron system, My, includes a vari-
able for A, C, and E (with 1 corresponding to firing and 0 corresponding

20. Again, this is my diagnosis of why the model is not correct; but if the reader
disagrees with it, this disagreement won’t make a difference to anything else I have to
say here. My goal in this section is just to defend the principles Exogenous and Endogen-
ous Removal (see below). And you can accept these principles while disagreeing with me
about why this simple model of Preemptive Overdetermination is incorrect.
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to notfiring). Its exogenous assignment tells us that A = 1 and C= 0, and
itincludes the structural equation £ := A A =C. The canonical model My
is correct; but, since Cdoesn’t fire, the variable for Cis not necessary. Just
as we can take the presence of oxygen for granted, so too can we take the
nonfiring of C for granted. So we can pluck the variable C out of the
model and replace it with its actual value, 0, in the structural equation.
We will be left with a model—call it ‘M, ©’—which contains the sole
exogenous variable A, the sole endogenous variable E, and the structural
equation E:=A A —0, or just E :=A.

In general, if M= (U,u,V,E,=) is a causal model with the
exogenous variable U € U, then let M~Y be the model that you get by
(a) removing U from U; (b) removing Us value from u; (c) ‘exogenizing’
anyvariables in Vwhose only parentwas U;?! (d) replacing Uwith its value
in every structural equation in E; and (e) removing information about the
deviancy of U values from =.

In my view, removing an exogenous variable from a correct causal
model in this way will not always leave a correct causal model behind. For
instance, consider the neuron system in figure 5. This is just like the
neuron system from figure 4, except that, in figure 5, C fires, and there-
fore, E doesn’t. The canonical model of this neuron system, M5, will be
exactly like My, except that the exogenous assignment will tell us that
C= 1, rather than C = 0. In my view, this makes a difference with respect
to whether the variable Ccan be ignored. For if we try to replace Cwith its
actual value in M5, we will be left with the structural equation £ :=A A —1,
which is a constant function of A. Whether A is 0 or 1, E will take on the
value 0. This equation tells us, falsely, that £ and A are causally independ-
ent. So the model M © is not correct, even though M is. So removing an
exogenous variable does not always preserve correctness.

In my view, in order for a structural equation V := ¢ (PA(V)) to
be correct, it must tell us how each of V’s values are causally determined by
the values of V's causal parents. So ¢, must be a surjective function of all of
the right-hand-side variables. That is: for every value v of the left-hand-
side variable V, there must be some assignment of values to the right-
hand-side variables PA(V) which gets mapped to v by the function ¢y If
¢y is not surjective, then the structural equation for Vcannot tell us how
each of Vs values could be causally determined by the values of Vs

21. ‘Exogenizing’ a variable V€ V means (a) moving V from V to U; (b) enriching
the exogenous assignment u so that it assigns V the value it takes on in the original model
M; and (c) removing V's structural equation from E.
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Figure 4. Omission. Figure 5. Prevention.

parents. So, if ¢y is not surjective, then the structural equation for V
cannot be correct.?? Additionally: on my view, a structural equation ¢y
tells us that the left-hand-side variable has its value causally determined by
all of the right-hand-side variables. So ¢y must be a function of all of V’s
causal parents. That is: for each Pa € PA(V), there must be some assign-
ment of values to the other variables in PA(V) such that, when the other
parents take on those values, the value Vtakes on depends upon which
value Pa takes on.

In general, if Uis exogenous in M, and if every structural equation
¢vin MY is both (a) a surjective function and (b) a function of all of Vs
remaining causal parents, then I will say that U is an inessential exogenous
variable in M.?®> Though removing exogenous variables will not always
preserve correctness, I believe that removing inessential exogenous vari-
ables will. That is, I believe we should endorse the following principle.?*

22. Orsoitseems to me. You may not agree that structural equations must be surjec-
tive. If so, this shouldn’t prevent you from accepting anything else I have to say here. By
imposing this requirement, I strengthen the antecedent of my principle Exogenous
Removal (see below). Strengthening the antecedent weakens the conditional. I think
that this weakening is necessary; butifyou think the principle is weaker than itneeds to be,
this is no reason for you to worry about its truth. (Readers who worry about this surjectivity
requirementshould also note thatitis notrequired atany pointin the proof of my theory’s
model-invariance in the appendix. So the theory would still be model-invariant even if
Exogenous Removal were strengthened. Indeed, the theory would be model-invariant
even if we say that every exogenous variable is inessential.)

28. V’s remaining causal parents in M~ are just Vs causal parents in M, minus U.

24. To be clear: I think that Exogenous Removal is a substantive claim; you could very
well disagree with me about it (if, for instance, you thought that removing any exogenous
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Exogenous Removal
If a causal model M = (U, u, V,E, =), is correct, and U € U is inessential,
then M~ Vis also correct.

2.2. Endogenous Removal

In order to be correct, a causal model need not include a variable for
every factor which is causally intermediate between two variables. Wheth-
er the room is illuminated is causally determined by whether the switch is
up. There are ever so many variables causally intermediate between these
two—whether current is flowing, whether the filament in the bulb is
heated, and so on. Nevertheless, a model which omits them all is still
correct. So, just as we may remove inessential exogenous variables from
a causal model, so too may we remove inessential endogenous variables.
Consider again the model My, shown in figure 1. This model tells us that
whether E fires is determined by whether Ddoes, and that whether D does
is determined by whether C does. Here, the variable for Dis not necessary.
We could pluck it out of the model by replacing it with the right-hand side
of its structural equation, C, wherever it appears. We will be left with a
model—call it ‘M;”,’—which contains the following system of structural
equations.

1 0

E:=BVC A—B,
B:=AAN-C iy \1
C——F

This model won'’t tell us how D fits into the causal determination struc-
ture of the neuron system, but it tells us about the causal determination
structure among the variables A, B, C, and FE, and what it tells us about
them is all correct.

In general, if M= (U,u,V,E,=) is a causal model with the
endogenous variable VE V, then let M~ " be the model that you get by
(a) leaving U and u alone; (b) removing V from V; (c) removing Vs
structural equation V :=¢ (PA(V)) from E; (d) replacing V with
¢ (PA(V)) wherever Vappears on the right-hand side of a structural
equation in E; and (e) removing information about Vfrom =.

variable with a deviant value wouldn’t leave a correct model behind). I don’t intend for
Exogenous Removal to be an implicit partial definition of what I mean by ‘correctness’.
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In my view, removing an endogenous variable from a correct caus-
al model in this way will not always leave a correct causal model behind. As
with exogenous variables, removing some endogenous variables won’t
leave behind surjective, functional structural equations. These variables
are not inessential. But they are not the only ones. Consider again the
model MID. If we pluck the variable B out of this model in the manner
specified above, then we will arrive at a model, MI_D’_B, which contains the
sole structural equation E :=(A A —C) V G, orjust E :=AV C, and the
exogenous assignment A = C'= 1. This model treats the variables Aand C
symmetrically; yet Aand Cdiffer causally. So the model MI_D"_B cannot be
correct. As I remarked above, in my view, this is because MID’_B tells us
that A and C causally determine the value of E along nonintersecting
paths, which is not true—but, whatever the reason, we should agree
that the model is incorrect, since C= 1 caused E=1 and A =1 did not.

Suppose that,in M, V has asingle parent, Pa, and asingle child, Ch,
Pa— V— Ch, and suppose that Pais not also a parent of Ch. If that’s so,
then say that V'is an interpolatedvariable in M. If Vis interpolated, then I'll
say that it is an inessential endogenous variable.?> Though removing
endogenous variables will not always preserve the correctness of a causal
model, I believe that removing inessential endogenous variables will.
That is, I think we should endorse the following principle.

Endogenous Removal
If a causal model M = (U, u, V,E, =) is correct, and V € V is inessential,
then M~Vis also correct.

2.3. Model-Invariance

We want a theory which will tell us whether two variable values, C = cand
E = ¢, are causally related, and we wish to formulate that theory within the
framework of causal models. (Throughout, I use ‘C’ and ‘E’ for the cause
and effect variables of interest, and ‘¢’ and ‘¢ for their actual values.) This
theory will say whether C = c¢caused E = e relative toa given causal model.
For an arbitrary Cand E, there will be a great many correct causal models
containing both Cand E. It would be nice if our theory did not require us
to survey them all. It would be nice if its verdicts did not vary from correct

25. Note that, if V is interpolated, then all of the equations in M~ " will automatically
be surjective functions of all of their right-hand-side variables, so long as all of the
equations in M are.
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model to correct model. Thatis, it would be nice if our theory satisfied the
following constraint.2®

Model Invariance

For any two causal models M and M’ which both contain the variables C
and E, if both M and M are correct, then C= ccaused E= ¢in Miff C= ¢
caused E= e¢in M.

Let’s call a theory of causation which is consistent with the prin-
ciples Model Invariance, Exogenous Removal, and Endogenous Removal
a model-invariant theory of causation.?” If a theory is inconsistent with
these principles, then let’s say thatit is a model-variant theory of causation.
It would be nice to have a model-invariant theory. If our theory is model-
invariant, then, when we ask whether C= ¢ caused E = ¢, we needn’t
worry about our verdict changing as we include additional variables
lying along, or feeding into, paths from C to E. Nor need we worry
about the theory being shielded from refutation by ad hoc choices
about which variables to include and which to ignore. Unfortunately,
almost all of the extant theories of causation in the causal modeling

26. There are alternatives to accepting Model Invariance. In general, let us say that a
theory of causation formulated with causal models specifies when a causal model is a
witnessto C= ccausing = e. We might go on to say that C = ccaused E = ¢iff there is some
witness to C= ¢ caused E= ¢ (and therefore, C= ¢ didn’t cause E = ¢ iff there is no
witness). Or we might say that C= ¢ caused £ = e iff all correct models containing C
and E are witnesses to C= ¢ causing = ¢ (and therefore, C = ¢ didn’t cause E= ¢ iff
some correct model fails to witness C = ¢ causing £ = ¢). The first alternative makes it easy
to establish causation but difficult to establish noncausation (we must establish noncau-
sation in all of the correct models). Likewise, the second alternative makes it easy to
establish noncausation, but difficult to establish causation. Model-invariance makes it
easy to establish causation and noncausation both.

Cf. Joseph Y. Halpern (2016: sec. 4.4), who shows that his theory of causation will not
revise its judgments of noncausation as endogenous variables are removed, though it may
reverse its judgments of causation. (Note that this result requires strong assumptions
about normality. Given the assumption that, ceteris paribus, a neuron’s firing is more
deviant than its remaining dormant, Halpern’s theory will reverse its verdicts about non-
causation as well. See Gallow, n.d.)

27. Note that a theory’s verdicts about causation will be preserved when inessential
variables are removed iff that theory’s verdicts about noncausation are preserved when
inessential variables are added. And a theory’s verdicts about noncausation will be pre-
served when inessential variables are removed iff that theory’s verdicts about causation are
preserved when inessential variables are added. So, if we are able to show that a theory’s
verdicts about both causation and noncausation don’t change when inessential variables
are removed, we will have also thereby shown that its causal verdicts don’t change when
inessential variables are added.
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framework are model-variant. In particular, the accounts of Hitchcock
(2001, 2007), Joseph Y. Halpern and Judea Pearl (2001, 2005), James
Woodward (2003), Halpern (2008, 2016), Brad Weslake (forthcoming),
and Holger Andreas and Mario Gunther (2018, 2020) will all reverse or
suspend their verdicts when inessential variables are added to or removed
from a causal model (see Gallow, n.d.).

In sections 3—6, Iwill introduce a theory of causation thatis model-
invariant. If this theory says that C = ¢ caused E = ¢ in a causal model M,
then it will continue to say this after any inessential variables are removed
from M. And, if this theory says that C = ¢ didn’t cause E = ¢in M, then it
will continue to say this after any inessential variables are removed from
M. Iwill introduce this theory by walking through some standard problem
cases from the literature—symmetric overdetermination (in section 3),
preemptive overdetermination (in section 4), and counterexamples to
transitivity (in section 5). According to this theory, a cause must be con-
nected to its effect by what I will call a ‘causal network’. In rough outline, a
causal network represents an uninterrupted process, each stage of which
depends upon its predecessors, and which transmits the cause’s deviant,
noninertial behavior to the effect. The definition of a causal network will
be developed in section 5. Then, in section 6, I will state the theory, apply
it to some additional cases, and try to motivate thinking of a causal net-
work as a process which transmits deviant, noninertial behavior.

3. Symmetric Overdetermination

Assimple case of symmetric overdetermination is shown in figure 6. Either
A’s or C’s firing would have been enough, on its own, to make E fire. Both
Aand Cfired, so the firing of £ was overdetermined, and symmetrically so.
There’s nothing that A’s firing has that C’s firing lacks; nor anything Chas
that A lacks. If either of them caused E to fire, then both of them did. For

another case with a similar structure, consider Pay Raise.?®

Pay Raise

Franny, Sammy, and Tammy vote on a proposal to raise legislators’ salaries.

28. Cf. Livengood 2013. Note: when I say that Pay Raise has a similar causal structure
to Symmetric Overdetermination, I am in part assuming that the ‘yea’ votes and the proposal’s
passing are deviant. (Of course, the causal structures are similar, not exactly the same. In
Symmetric Overdetermination, I£ would still have fired, even if either A or C had not fired;
and, in Pay Raise, the proposal would still have passed, even if either Franny, Sammy, or
Tammy had not voted ‘yea’.)
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5] /4y)

Figure 6.  Symmetric Overdetermination.

The proposal requires two out of three votes in order to pass. All three vote
in favor, and the proposal passes.

The passing of the proposal was overdetermined by the three votes in
favor, and symmetrically so. There’s nothing that any one vote has that the
others lack. If any vote caused the motion to pass, then all of them did.

In cases like these, the effect is overdetermined. The world supplied
more than enough for the effect to obtain. There is some appeal to the
idea that the world did this by supplying more than enough causes—that
is, there is some appeal to the idea that each of the overdeterminers is
individually a cause of the effect. For instance: Cindividually caused E to
fire, and Franny individually caused the proposal to pass. At the same
time, there is some appeal to the idea that C’s firing didn’t all by itself cause
E to fire, and that Franny didn’t all by herself cause the proposal to pass.
Perhaps she is part of a cause—perhaps she contributed to the proposal’s
passing—but, we may think, she did not cause it to pass all by herself,
given that the proposal would have had a two-vote majority even without
her support.

John L. Mackie (1965) and David K. Lewis (1986) were both happy
with the verdict that C’s firing didn’t cause E to fire in figure 6. According
to both, in cases of symmetric overdetermination, intuition is split and a
theory of causation could reasonably answer with either verdict.?” I agree
with Mackie and Lewis.?* An adequate theory of causation needn’t say

29. “Our ordinary concept of cause does not deal clearly with cases of this sort”
(Mackie 1965: 251). “Such cases can be left as spoils to the victor, in D. M. Armstrong’s
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that C’s firing caused E to fire. However, it should not say that E’s firing
was uncaused. If neither A nor Cindividually caused FE to fire, then they
must have done so jointly. I will formally represent A and C’s jointly caus-
ing I by allowing not just individual variable values, but also tuples of
variable values, to be causes. In the canonical model Mg, to say that A’s
firing and C’s firing jointly caused E to fire is to say that (A, C) = (1,1)
caused E = 1.3

My theory will not say that C’s firing individually caused E to fire.
So I'will take the lesson of Symmetric Overdetermination to be this: we should
want a theory of causation to tell us more than whether an individual
variable value C = c¢caused avariable value £ = ¢. We should also wantit to
tell us when some collection of variable values, C = ¢, caused a variable
value E = e. That is: we should want a theory not just of individual causa-
tion, but of joint causation as well.32

Throughout, by the way, I will draw no distinction between a vari-
able, V; and a 1-tuple containing that variable, (V) —nor will I distinguish
between a variable value V= vand a 1-tuple variable value (V) = (v). This
conflation allows a theory of joint causation to cover individual causation
as a special case.

Once we allow tuples of variables to be causes, we should general-
ize Model Invariance. So generalized, the principle will tell us that, if both
M and M’ are correct and contain the variables in C U (E), then C=c
caused £ = ¢ in M iff C = ¢ caused E = ¢ in M'. This is how I will under-
stand the principle, and the corresponding property of model-invariance,
from here on out.

phrase. We can reasonably accept as true whatever answer comes from the analysis that
does best on the clearer cases” (Lewis 1986: 194).

30. This view is increasingly unpopular. Halpern and Pearl, Hitchcock, Woodward,
and Weslake, among others, take it as a desideratum of a theory of causation that it says
that C’s firing caused E to fire in figure 6. See also the arguments for this conclusion in
Schaffer 2003.

31. ‘(A, C)’ is a pair whose first component is the variable A and whose second com-
ponentis the variable C. ‘(1, 1)’ is a pair whose first and second components are both the
value 1. Thus, (A, C) = (1,1)’ says that A=1and C= 1.

32. We could try to generalize further by asking when one tuple of variable values,
C = ¢, caused another, E = e. From my perspective, allowing collections of variable values
to be effects in this way does not purchase any additional generality; for I am inclined to
say that C = c caused E = e iff C = c caused L; = ¢;, for each E; € E and its corresponding
value ¢; € e.
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Are joint causes causes simpliciter? Did Franny cause the proposal
to pass? We could go either way. While the formalism will distinguish
causes which are 1-tuples from causes which are n-tuples, for n > 1, we
could decide to interpret this formalism by saying that if some n-tuple C
caused I, then each C € C counts as a cause of I in its own right. Or we
could decide to say that each C € C is merely part of a cause, and dis-
tinguish joint from individual causation. My own inclination is to say that
neither Franny nor Sammy individually caused the proposal to pass, even
though, together, they did; but if the reader balks at this, they should feel
free to go the other way.

4. Preemptive Overdetermination

The neuron system shown in figure 1 provides a case of Preemptive Over-
determination. For another case with a similar causal structure, consider
Tax Cut.>®

Tax Cut

The proposal to lower corporate taxes requires one more vote to pass.
Tammy’s constituents will be angry if she votes in favor, but it is important
to her campaign contributors that the proposal pass, so she is prepared to
deal with her constituents’ ire if her vote is needed. Fortunately for
Tammy, Sammy votes ‘yea’, the proposal passes by a single vote, and
Tammy is free to vote ‘nay’.

The proposal’s passing was overdetermined—the corporate donors
bought more than enough influence. But the overdetermination is not
symmetric. Though the causal process initiated with donations to Sammy
runs to completion, the causal process initiated with donations to Tammy
is preempted by Sammy’s voting ‘yea’. Tammy would have caused the
proposal to pass, were it not for Sammy; but, as it happens, Tammy is
merely a backup, would-be cause of the proposal’s passing.

Cases like Preemptive Overdetermination serve as counterexamples to
a simple counterfactual theory of causation which says that counterfac-
tual dependence is necessary for causation. Consider the canonical
model of the neuron system from figure 1, M;. In that model, it is not
true that, had Cnot fired, E wouldn’t have fired. For, had Cnot fired, B
would have fired, and E would have fired all the same. (In the counter-
factual model M; [ C— 0] in which we intervene to set C’s value to 0, £

33. When I say that 7ax Cut has a similar causal structure, I assume that the corporate
donations, the ‘yea’ votes, and the proposal’s passing are all deviant.
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takes on the value 1.) But C’s firing caused E to fire. So counterfactual
dependence is not necessary for causation.

Lewis (1973) dealt with cases like Preemptive Overdetermination by
taking causation to be not counterfactual dependence but rather the
ancestral, or the transitive closure, of counterfactual dependence.
While E’s firing doesn’t counterfactually depend upon C’s firing directly,
it does counterfactually depend upon D’s firing, and D’s firing counter-
factually depends upon C’s firing. So Lewis says that C’s firing caused E to
fire. This Lewisian transitivity maneuver allows us to correctly say that, in
the model My, C =1 caused E = 1. Unfortunately, if we straightforwardly
import the Lewisian maneuver into the framework of causal models, the
resulting account will be model-variant. For suppose we remove the vari-
able D from My, in the manner described in section 2.2. We will get the
model M;”, in which there is no variable intermediate between Cand E.

1 0

E:=BVC A—B
B:=AA-C 1/ \1
C E

Even though, given the causal model M;, a Lewisian theory will say that
C=1 caused E =1, given the model M;”, it will say that C=1 didn’t
cause I = 1. So the theory will be model-variant.

The treatment of Preemptive Ouverdetermination favored by almost
every author in the causal modeling literature appeals to either A or
B3 Though E=1 does not counterfactually depend upon C=1 in
the model My, it does counterfactually depend upon C= 1 in the counter-
factual model where we’ve intervened to fix B’s value to O0:
M,[B— 0] F C= 00— E=0.Likewise, E = 1 counterfactually depends
upon C=1 in the counterfactual model M;[A — 0]. And according to
these authors, counterfactual dependence in counterfactual models like
these is sufficient to show that C=1 caused £ = 1. No solution which
appeals to the variables A or Bin this way will be model-invariant. For note
that the exogenous variable A is inessential in M;. So, by Exogenous

34. See, in particular, Halpern and Pearl 2001, 2005; Hitchcock 2001; Woodward
2003; Halpern 2008, 2016; Weslake, forthcoming. See Yablo 2002, 2004 for similar
ideas. Andreas and Gunther (2018) have a different treatment of Preemptive Overdetermi-
nation which also appeals to the variable B. (Beckers and Vennekens [2017, 2018] have a
radically different treatment of Preemptive Overdetermination—according to them, preemp-
tive overdeterminers are not causes.)
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A Model-Invariant Theory of Causation

Removal, we may pluck it out, and we will be left with a model, M;*, in
which the endogenous variable Bis (now) inessential.

0
ovp CI/B\E’
.:—|C \11)/

W O

Since Bis inessential, Endogenous Removal tells us that we may pluck it
out. Doing so leaves us with a model, MI_A’_B, in which neither A nor B
appears.

1 1

— >

E:=-CVD C
D = C ! \1])/

So, if we want our theory of causation to be model-invariant, then we will
want a treatment of Preemptive Overdetermination which does not require
the variables A or B.

Return to the causal model M;”. For a moment, ignore the struc-
tural equation for B, focus just on E’s structural equation, and treat this
isolated structural equation as if it were a causal model unto itself—what
we can call the local model at E.

0

B
E:=BVC \
1 1

C——F

Notice that, in the local model at £, there will be counterfactual depend-
ence between E= 1 and C= 1. Since this is so, I'll say that £ =1 locally
counterfactually depends upon C= 1.

In general, given a causal model M = (U,u, V,E, =), with EE YV,
let’s define the local model at E, which we can write ‘M (FE)’, to be the model
in which (a) the exogenous variables are just the parents of E, PA(E), in
the original model M; (b) these exogenous variables are assigned what-
ever values they take on in M; (c) the sole endogenous variable is E; (d)
the sole structural equation is E’s structural equation from M; and (e) the
information about the deviancy of E and PA(E)’s values is the same as in
M. Then, we may say that, in the model M, E = ¢, rather than ¢, locally
counterfactually depends upon C= ¢, rather than ¢, iff, in the local

69

220T YoIeN || U0 Jasn OOHE ANOLS ANNS Ad Jpd mojieBsy/060106/G7/1/0€ L4pd-ajoie/maIAs.-edlydosoliyd-ayynpa ssaidnaxnp peal//:diy woly papeojumoq



J.DMITRI GALLOW

model atE, E = ¢, rather than ¢, counterfactually depends upon C= ¢,
rather than ¢*:

ME)EC=c¢"[—E=¢"
In contrast, if there is counterfactual dependence in the model M,
MEC=(¢O—=E=¢"

Then I will say that E = ¢, rather than ¢", globally counterfactually depends
upon C = ¢, rather than ¢, in the model M35 (If Cis a causal parent of E
and there is only one path leading from Cto E, then there won’t be any
difference between local and global dependence—in those cases, I will
allow myself to say simply: ‘E= ¢, rather than €', depends upon C= ¢,
rather than ¢*’.)

To properly classify C = 1 as a cause of E = 1in M;”, I will suggest
that we focus on local, as opposed to global, counterfactual dependence.
Turning our attention to local dependence may help with M;”, but it will
not, on its own, help us to say that C’s firing caused E to fire in the
canonical model M;. For in this model, E’s firing does not locally depend
upon C’s firing (the variable for Cis not even included in the local model
M, (E)).Ibelieve that we should handle this case roughly as Lewis (1973)
did: by focusing not on local dependence but rather on something like
the transitive closure of local dependence. However, there are a number of
counterexamples to the thesis that a chain of dependence is sufficient for
causation. Let’s turn to those counterexamples now.

5. Causal Networks

Suppose you’ve traced out a sequence of states or events, where each state
or event in the sequence depends upon its predecessor. When can you go
on to conclude that the state or event at the start is a cause of the one at
the end? Lewis gave the answer ‘always’. This answer allowed him to deal
with cases like Preemptive Overdetermination, but it came at a cost. Chris
smokes, contracts cancer, undergoes chemo, and survives. The survival
depends upon the chemo; the chemo depends upon the cancer; and the
cancer depends upon the smoking. Lewis concludes that smoking caused
Chris to survive. This is difficult to swallow, no matter how it’s seasoned.

35. Of course, in order for these dependence claims to be true, it must also be that
M FE C= ¢ A E= e. Throughout, I am using ‘¢’ and ‘¢ for the actual values of C and E. I
will say more about the contrastive ‘rather than’ clauses in section 5.1 below.
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A Model-Invariant Theory of Causation

The answer to give is ‘sometimes, but not always’, and the difficulty lies in
working out just when.

In this section, I will try to lay down conditions specifying when a
directed path running from Cto E, P: C— Dy — Dy — ...— Dy— E,is
what I will call a causal path. Actually, I will try to do something slightly
more general. In section 3, I explained that I will provide a theory of
causation which allows tuples of variable values to be causes. But there
won’t be a single directed path from a tuple of variables G to an effect
variable E. So I will begin by generalizing the notion of a directed path—
I’ll call the generalization a nelwork—and then I'll try to lay down con-
ditions specifying when a network from C to E is what I will call a causal
network. My theory will say that causal networks are necessary for causa-
tion: if C’s values are to be a cause of E’s, then there must be a causal
network leading from C to E.

First, let me explain what I mean by network. We may think of a
directed path, P, from Cto E, as a collection of directed edges generated
by the following procedure: begin with C, and select exactly one of its
causal children, D, to be its P-child. Then, include the directed edge
between C and D, C— D, in P. Next, select exactly one of D’s causal
children, and proceed in this manner until you reach E. Now, we can
define a network, N, from the tuple of variables C to E, as a collection of
directed edges generated by the following procedure: begin with each
variable C € C, and select some of its causal children, D;, D5, ..., Dy (you
needn’t choose just one), to be its N-children.3® Next, for each of the D;,
select some of their causal children to be their N-children, and proceed
in this manner until £ is the only variable in /N without an N'-child. That
is, a networkfrom C to I is just a union of directed paths from some C € C
to E—where, for each C € C, there is some directed path leading from C
to E included in the union. For instance, in Mg, A — E < Cis a network
from (A, C) to E. And, in M;,

C<B>E

D

36. Terminology: if there is a directed edge C— Din a network 2N, then I'say that Dis
one of C’s N-children, and that Cis one of D’s N -parents. Note that being one of D’s N -
parents is not the same as being a parent of D lying in the network /N'. Consider the
network N: C— B— E in the model Mj”. Cis a parent of E lying in V', but Cis not one
of E’'s N -parents.
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is a network from C to E (remember, I don’t distinguish between the
variable C and the 1-tuple (C)). Note that every directed path is a net-
work, though not every network is a directed path.

To reiterate: in this section, I will be trying to lay down conditions
specifying when a network is causal. And according to the theory I'll pres-
entin section 6, causal networks are necessary for causation. In order for
C’svalues to be a cause of E’s value, there must be a causal network leading
from C to E. In these terms, a Lewisian view says thata network 2\ is causal
whenever the value of each variable in N depends upon the values of its
N -parents. I believe that we should impose additional constraints on a
network being causal. I'll introduce these constraints by surveying some
representative counterexamples to this Lewisian view.

5.1. Causal Networks and Contrasts

One class of counterexamples to the Lewisian view is well illustrated by
the neuron system illustrated in figure 7 (cf. Paul and Hall 2013: figure 17;
Lewis 1986: 210).

(a) (b)

h %) 13

Figure 7.

In this neuron system, the octagonal neurons A and B are special. They
can either fire weakly (indicated with light gray coloring) or strongly (indi-
cated with dark gray). The connection between Cand Bis a special kind of
inhibitory connection—if the neuron at its base fires, then this will
diminish the strength with which the neuron at its head would otherwise
have fired. So, for example, if A fires strongly and C doesn’t fire, as in
figure 7b, then Bwill fire strongly. But if A fires strongly and C fires, as in
figure 7a, then Bwill only fire weakly. Neuron E is a regular neuron, so if B
fires, whether weakly or strongly, E will fire. In figure 7a, E’s firing (rather
than not) depends upon B’s firing weakly (rather than not firing). And
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A Model-Invariant Theory of Causation

B’s firing weakly (rather than strongly) depends upon C’s firing (rather
than not). But Cs firing did not cause E to fire. So this neuron system
provides a counterexample to the Lewisian view that causation is the
transitive closure of dependence.

For another case with a similar structure: A dog bites Michael’s
righthand. With his right hand on the mend, Michael uses his left hand to
hail a taxi. The taxi’s stopping depends upon Michael’s hailing the taxi
with his left hand (rather than not hailing the taxi), and Michael’s hailing
the taxi with his left hand (rather than his right) depends upon the dog
bite. But the dog bite did not cause the taxi to stop.3’

I follow Cei Maslen (2004) and Jonathan Schaffer (2005) in think-
ing that cases like these illustrate the importance of paying attention to
contrastsin chains of dependence.® There is a difference between saying
that (a) E = ¢, rather than ¢, depends upon C = ¢, rather than ¢", and
saying that (b) E = ¢, rather than ¢*, depends upon C = ¢, rather than ¢,
or that (c) E = ¢ rather than ¢, depends upon C = ¢, rather than ¢*. The
first claim, (a), is made true by a counterfactual C= ¢O— E= ¢ the
second, (b), is made true by a counterfactual C= ¢ O— E= ¢"; and
the third, (c), is made true by a counterfactual C= ¢* O— E= ¢". The
lesson of figure 7 is this: in order for a network to be causal, it is not
enough that the value of each variable in the network depend upon the
value of its parents in the network. The relevant contrasts also have to
‘match up’.

As a preliminary account, then, we have:

CAUSAL NETWORK (PRELIMINARY)

A network, N, from C to E, is a causal network only if there is an

assignment of contrasts to the variables in N such that:

(a) E’s contrast is distinct from its value;

(b) for each D & C in the network, D’s value, rather than its con-
trast, locally depends upon D’s N -parents’ values, rather than
their contrasts.

And our preliminary theory is that C = ¢ caused E = ¢ only if there is a
causal network leading from C to E. Note that there is no one contrast we
could assign Bin figure 7a such that E’s firing, rather than not, depends

37. See McDermott 1995, as well as the counterexamples to transitivity discussed in
Paul 2004.

38. For more on contrasts in causal claims, see Hitchcock 1996a, 1996b; Schaffer
2012a.
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upon B’s firing weakly, rather than that contrast; and such that B’s firing
weakly, rather than that contrast, depends upon C’s firing, rather than
not. So C— B— E is not a causal network, and our preliminary theory
tells us that C’s firing was not a cause of Is firing.

Note that, because we require the contrasts to ‘match up’, once we
have chosen contrasts for the variables in C, the choice of every other
contrastis out of our hands. Pick any D € C in the network N, let P be its
N -parents, and let p* be their contrasts. Then, clause (b) tells us that D’s
contrast must be the value d* such that P = p* = D= d" is true in the
local model at D. There will only be one such d*, so we have no choice
about which contrast to assign to D. (Dwas arbitrary, save our assumption
that D & C, so the same goes for every variable in the network, except for
those in C.)

Paying attention to contrasts has other benefits as well. For
instance, it allows us to handle cases of trumping preemption (see Schaffer
2004). Suppose that the troops always follow the orders of the highest
ranked officer. The Major and the Sergeant both order the troops to
advance, and they advance. Since the Major outranks the Sergeant, it is
natural to want to say that it was the Major, and not the Sergeant, who
caused the troops to advance. Use a variable, M, to represent the Major’s
orders. Let M take on the value 2 if the Major orders to advance, 1 if he
orders to stay put, and 0 if he gives no order at all. Similarly, use the
variable S for the Sergeant’s orders. S is 2 if the Sergeant orders to
advance, 1 if he orders to stay put, and 0 if he gives no orders at all.
And, finally, use a variable, A, for whether the troops advance. A =2 if
they advance, and A = 1 if they do not. I'll assume that the structural
equation A := ¢4(M, S)is correct, where

M,if M#0
daM, )= S, if M=0and S#0
1, if M=0 and $=0

That is: the soldiers will do whatever the Major orders, so long as the
Major gives an order. If he does not, then they will follow the orders of
the Sergeant. If neither the Major nor the Sergeant give orders, then they
will not advance. In this model, notice that, even though the soldiers’
advance doesn’t depend upon the Major’s giving the order to advance,
rather than giving no orders at all (M= 0 O— A= 2), it does depend
upon the Major’s giving the order to advance, rather than giving the
order to stay put (M= 10— A # 2). So M— Awill be a causal network.
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A Model-Invariant Theory of Causation

Since the soldiers’ advance does not depend upon the Sergeant’s orders,
no matter which contrast we choose, S— A will not be a causal network,
and the Sergeant’s orders will not count as a cause of the soldiers’

advance.??

5.2. Causal Networks, Defaults, and Deviancy

Schaffer (2005) holds that this kind of contrastivism allows us to handle
all counterexamples to the Lewisian view, but in the present context, this
would be an overreach.*” Consider again the neuron system of Preemptive
Overdetermination from figure 1, but suppose that C doesn’t fire, as in
figure 8. In this neuron system, E’s firing depends upon B’s firing (rather
than not). And B’s firing (rather than not) depends upon C’s dormancy.
So we have a chain of dependence with matching contrasts leading from
Cto E, but C’s value did not cause E’s.*!

Figure 8. Figure 2.

Or consider again the neuron system from figure 2 (reproduced
here). There, E’s remaining dormant depends upon D’s firing (rather
than not), and D’s firing (rather than not) depends upon C’s firing. So
again we have a chain of dependence with matching contrasts leading
from Cto E, but C’s value did not cause E’s.

As we’ve already seen (in section 1.1), were it not for the infor-
mation about which variable values are default, inertial states and which
are deviant noninertial events, we could model the neuron system in

39. Cf. the treatments of trumping preemption in Lewis 2004; Halpern and Hitchcock
2010; Hitchcock 2011.

40. Schaffer is working in a different theoretical framework, and it affords him a
response to the kinds of counterexamples raised below (see Schaffer 2005: 342).

41. Carolina Sartorio’s Causes as Difference Makers principle (2005, 2016) entails that
C’s failure to fire cannot cause E to fire, so long as C’s firing would have caused E to fire.
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figure 2 with a model isomorphic to the canonical model of Preemptive
Overdetermination from figure 1. So we should expect an explanation of
why C = 1 didn’t cause £ = 0 to make use of this additional information.
Note also that Exogenous Removal and Endogenous Removal allow us to
remove every variable other than C and E from M,. A is inessential, so
Exogenous Removal tells us that the model My is correct. In the model
MgA, B is inessential, so Endogenous Removal tells us that the model
M;A’_B is correct. And similarly, in the model MQA, D is inessential, so
Endogenous Removal tells us that the model MgA’_D is correct. If we want
our theory of causation to be model-invariant, then it had better tell us
that C= 1 didn’t cause £ = 0 in each of these models. So we have good
reason to think that the verdicts of our theory should not depend upon
the defaultinformation of any variables other than Cand E themselves.*?
In both figure 2 and figure 8, it is noteworthy that either C or E
takes on avalue representing a default, normal, or inertial state. Whereas,
in figure 1, both C and E take on values representing deviant, abnormal,
noninertial events. Itis also noteworthy that, in both My and Mg, there are
multiple directed paths from C to E. I will suggest that these are the
reasons why C does not cause E in either of these neuron systems.
Suppose that we are given a network, N, from C to E, and in this
network are two variables, Dand R. If there is a directed path from D to R,
O:D— O0; — O,— ...— Oy— R, where none of the directed edges in
O are included in N, then I'll say that Dis a departure variable, and that R
is one of its return variables (relative to the network JN). For instance, in
the model M, relative to the network C — B — E, Cisadeparture variable
and E is its return. And, in the model My, relative to the network
C— D— E, Cis a departure variable with return E. In contrast, relative
to the network A — B— Ein My, E is not a return variable—and, relative
to the network C— B— E — D «— (, Cis not a departure variable.
Take some network, N, with a departure variable D, and one of its
returns, R. D potentially affects Rboth via N and via some other path or
paths external to N'. It could be that what D gives R through N, it takes
away along some other path or paths. If D gives a deviant value to R
through N —that is, if both D and R have deviant values and more

42. Every variable in the model besides C and E may be removed; but we may not
remove every variable besides C and E. For D is not inessential in M;A'_B, and B is not
inessential in M;A’fp. So for all we’ve said, it could be that what = tells us about D should
be relevant to the theory’s verdicts in M;A‘fB, while what = tells us about B should be

relevant to the theory’s verdicts in My
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default contrasts—then this will make no difference with respect to
whether 2V is a causal network. (Thus, in figure 1, C— D — E is causal.)
But if D does not give a deviant value to R through N, then N is not a
causal network. (Thus, in figure 2, C— D — FE is not causal.)

Let us add this to our account: a network is causal only if every
departure and return variable in the network takes on a value which is

more deviant than its contrast.*

CAUSAL NETWORK

A network, N, from C to E, is a causal network iff there is an assignment of

contrasts to the variables in N such that:

(a) E’s contrast is distinct from its value;

(b) for each D & C in the network, D’s value, rather than its contrast,
locally depends upon D’'s N -parents’ values, rather than their con-
trasts; 4 and

(c) every departure and return variable in N has a value which is more
deviant than its contrast.

This completes my account of when a network is causal.

Note that, while CAUSAL NETWORK requires Is contrast to be dis-
tinct from its value, it does not require that the other variables in the
network have contrasts which are distinct from their values.*® For
instance, consider the neuron system in figure 9. This is a case of double
prevention. Fis a potential preventer of I’s firing; and C’s firing prevented Ff
from preventing E. In the canonical model My,

N
C\D/F E

is a causal network from C to E. For we may assign C, B, D, and E the
contrast value 0 (note that B’s contrast is the same as its value) and F
the contrast value 1. Then, E= 1, rather than 0, locally depends upon

43. Couldn’t a departure variable, D, have a value no more deviant than its contrast,
and yet still not take away along other paths what it gives to its return variable, R, through
IN'? Yes, but in that case, the additional paths from D to R may simply be incorporated
into the network 2N, and the resulting network will be causal. (See the discussion of figure
9 below.)

44. Recall: there is a difference between a variable’s N -parents and its causal parents
lying in N. See note 36.

45. If d” is D's actual value, it is odd to call d* a contrast value, but I'll stick to this
terminology nonetheless.
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Figure 9.

F=0, rather than 1. F=0, rather than 1, locally depends upon
(B,D) = (0,1), rather than (0,0). D =1, rather than 0, locally depends
upon C=1, rather than 0. And B = 0, rather than 0, locally depends
upon C= 1, rather than 0. (For, in the local model at B, My(B), the
counterfactual C= 0 [J— B = 0is true.) It can seem that the variable B
is an idle wheel in this network, butitis important thatit be included. For,
relative to the network C— D— F— E, F is a return variable with a
default value and a deviant contrast. So the network C— D— F— E is
not causal. However, relative to the network which includes B, F'is not a
return variable, and need not have a deviant value, nor a default contrast.

Note that E’s firing globally counterfactually depends upon C’s
firing. If we think that global counterfactual dependence between events
like these suffices for causation, and we wish to understand causation in
terms of causal networks, then itis for the good that we count as causal the
network which includes B. In fact, global counterfactual dependence
suffices for the existence of a causal network, not just for the model
My, but in general. That is: in any causal model M, if there is some assign-
ment c¢” to the variables in C such that the global counterfactual C = ¢*
= E # eistrue, then there will be a causal network leading from some
subtuple of Cto £'in M. (See proposition A.1 in the appendix for a proof.)

So defined, causal networks are model-invariant. Suppose we have
a causal model M, with an inessential exogenous variable U & C. Then,
there will be a causal network from C to E in M iff there is a causal network
from C to E in M™Y. Similarly, if we have a causal model M, with an
inessential endogenous variable V& C U (E), then there will be a causal
network from C to E in M iff there is a causal network from C to Ein M™Y.
(See the proof of proposition A.2 in the appendix.)
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A Model-Invariant Theory of Causation

If we suppose that survival is an inertial state—the state in which
people normally remain unless they are acted upon from without—then
this proposal explains why the boulder’s becoming dislodged does not
cause Matthew to survive (in Boulder, from section 1.1), even though his
survival depends upon his jumping out of the way (rather than staying
put), and his jumping out of the way (rather than his staying put)
depends upon the boulder’s getting dislodged. So too does it explain
why Chris’s smoking does not cause him to survive, even though his sur-
vival depends upon the chemotherapy, and the chemotherapy depends
upon the smoking. Both cases have a causal structure similar to Short
Circuit: a threat to survival is created along one path, and simultaneously
neutralized along another. If survival is an inertial state, then neither path
will be causal. (Nor will the network which consists of both paths be caus-
al—for, while the survival depends upon the neutralization of the threat,
it does not depend upon the threat and the neutralization both. If Chris
had neither cancer nor chemo, he would still have survived; and, had the
boulder not fallen and Matthew not jumped, he would still have sur-
vived.)

6. Causation and the Transmission of Deviancy

Causal networks are the model-invariant heart of my theory of causation.
On my view, in order for C to cause I, there must be a causal network
leading from C to L. In section 6.1, I'll say a bit to motivate thinking of a
causal network as a process which transmits deviant, abnormal, or noni-
nertial behavior. In section 6.2, I'll present my theory of causation,
according to which (roughly) Cis a cause of £ iff there is a causal network
leading from C to E, C has deviancy to give, and E receives that deviancy
via the causal network. I'll go on to apply this theory to cases from Sarah
McGrath (2005) and Ned Hall (2004).

6.1. Productive Networks

The distinction between the values of variables which represent default,
normal, inertial states and those which represent deviant, abnormal, non-
inertial events enters into my theory of causation at least in clause (c) of
CAUSALNETWORK. Itis natural to wonder what this distinction is doing in a
theory of causation. I take the argument presented in section 1.1 to dem-
onstrate that this distinction or something like it mus¢ be included in any
adequate theory. But, even once this is appreciated, it is natural to won-
der: why should this distinction play any role in our causal thought and
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talk? In this subsection, I want to gesture at an answer to this question.
Roughly, I will suggest that a cause is something which transmits abnor-
mal, deviant, or noninertial behavior to its effect.

If causation is to be understood in terms of the transmission of
deviancy, then what is it for this deviancy to be transmitted? One possible
answer is that deviancy is transmitted iff there is an uninterrupted process
leading from cause to effect, each stage of which receives its deviancy
from the preceding stage. Let’s try to make this idea a bit more precise.
Contrast a causal network, as defined in section 5, with a productive net-
work, as defined below. (The only difference is in clause (c).)

PRODUCTIVE NETWORK

Anetwork, IV, from C to E, is a productive networkiff there is an assignment

of contrasts to the variables in /N such that:

(a) E’s contrast is distinct from its value;*®

(b) for each D & C in the network, D’s value, rather than its contrast,
locally depends upon D’s N -parents’ values, rather than their con-
trasts; and

(c) everyvariable in N has a value which is more deviant than its contrast.

Note that any productive network will automatically count as a causal
network. But not all causal networks are productive networks. Being
linked by a productive network is sufficient, but not necessary, for
being linked by a causal network.

A productive network is so called because it provides a natural
characterization of the notion of a productive causal process in terms
of causal models.*” So understood, a productive causal process is an
uninterrupted process by which deviant values are transmitted. And
what it is for this deviancy to be transmitted is for the deviancy of each
stage to locally depend upon the deviancy of its immediate predecessors.

Notice that there is a productive network leading from Cto E in
the canonical model of Preemptive Overdetermination in figure 1. So too is
there a productive network leading from A to E in the canonical models
of figures 4, 7, and 8—and from G to E in figure 9. In general, it seems

46. Condition (a) is redundant in the presence of condition (c), but I include it to
emphasize that PRODUCTIVE NETWORK is a strengthening of CAUSAL NETWORK.

47. The notion which PRODUCTIVE NETWORK characterizes is not the notion of a
causal process provided by authors like David Fair (1979), Wesley Salmon (1984, 1994),
and Phil Dowe (2000) —those notions are characterized in terms of physics, not causal
models—but there are some similarities. Cf. also Hall’s (2004) characterization of causal
production.
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that, if there is a productive network from Cto E in the canonical model,
the judgment that C caused E is intuitive and uncontroversial. There is
little debate about whether C’s firing caused E to fire in figure 1, or
whether A’s firing caused E to fire in figures 4, 7, and 8. In contrast, in
the canonical model of the case of Double Prevention shown in figure 10,
there is a causal, but not a productive, network leading from C’s firing to E’s
firing. In My, C— D — Eis a causal network. However, C— D — Eisnot
a productive network, since the intermediate variable D takes on a default
value. People’s causal judgments about figure 10 tend to be less uniform.
More generally, it seems that, when variables are connected by causal, but
not productive, networks, some (but by no means all) are more hesitant
to attribute causation.

00

51 ) 3
Figure 10.  Double Prevention.

Unlike causal networks, productive networks are model-variant.
Take the canonical model M;,.

1 0 1
E:=BA-D C—D—>EL
D =AAN-C ]T ]T
W B

In this model, the exogenous variables A and B are both inessential. So
Exogenous Removal tells us that we may remove them both, leaving
behind the model M "

E :=-D 1 0 1
D =-C C—D—E

In this model, the exogenous variable D is inessential, so Endogenous
Removal tells us that we may remove it, leaving behind the model

—A,—B,—D
M,

E:=C C——F
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And in this model, there is a productive network leading from Cto E.

So: if we were to understand the transmission of deviancy as PRO-
DUCTIVE NETWORK does—each variable intermediate between C and E
receives a deviant value from its parents in the network—then whether
deviancy is transmitted from C to E will vary from model to model.*
CAUSAL NETWORK is a model-invariant weakening of PRODUCTIVE NET-
WORK. It suggests a different way of understanding the transmission of
deviancy. Suppose that E = ¢, rather than ¢, globally counterfactually
depends upon C = ¢, rather than c¢*, and suppose that C and E both
represent deviant, noninertial events, while both ¢* and ¢ represent
more default, inertial states. In that case, let us say that C has transmitted
deviancy to E—we won’t concern ourselves with whether, for instance,
this transmission was accomplished with double prevention or not.
Because global counterfactual dependence suffices for the existence of
a causal network, if E’s deviancy counterfactually depends upon C’s, then
there will be a causal network leading from (some subtuple of) C to E.
Moreover, if E globally depends on C, there will be a causal network
leading from (some subtuple of) C to E without any departure or return
variables—call this a ‘closed causal network’.*? So another, equivalent,
way of understanding the claim that counterfactual dependence between
deviant, noninertial events suffices for the transmission of deviancyis this:
deviancy may be transmitted through a closed causal network.

In the case of Preemptive Overdetermination from figure 1, E’s
deviancy does not globally depend upon C’s. This is because C affects E
along two separate paths. Along one path, C deprives £ of deviancy; along
the other, it provides deviancy. In cases like these, too, let us say that
deviancy has been transmitted from cause to effect. More generally, if
there are departure and return variables in a network, D and R, then it
may be that what D transmits to R via the network, it takes away along
some other path or paths. If D transmits deviancy to R through the net-
work (if both D and R take on deviant, rather than more default, values),
then this won’t matter. We should still say that C has transmitted deviancy

48. Schaffer (2000, 2012b) argues that, in many paradigm instances of productive
causal processes—pulling the trigger, thereby shooting the gun, thereby killing the tar-
get—we may interpolate variables between cause and effect so as to reveal a case of double
prevention.

49. See the proof of proposition A.1 in the appendix to understand why, if E=e¢
counterfactually depends upon C = ¢, there will be a closed causal network leading from
(some subtuple of) C to E.
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to E. That is: in general, we should allow deviancy to be transmitted
through any causal network, and not just closed causal networks.

6.2. Productive Causation

CAUSAL NETWORK does not say anything about C and E having deviant
values or (more) default contrasts. So if we wish to think of causation in
terms of the transmission of deviancy in the way that I have been
suggesting, then we should impose this additional requirement. Doing
so yields the following relation, which I will call productive causation:

PRODUCTIVE CAUSATION
Given a causal model M containing the variables in C and E, C=cis a
productive cause of E = ¢ in M iff, in M, there is a minimal causal network
leading from C to E which assigns contrasts to C and £ which are more
default than their values.

That is: G = cis a productive cause of E = ¢ iff there’s a minimal causal
network leading from C to E and, additionally, C and E, like any departure
and return variables in the network, have values which are more deviant
than their contrasts. (I’ll explain what I mean by ‘minimal’ below.)

If causation just is productive causation, this would explain some
otherwise puzzling features of our causal thought and talk. To borrow an
example from McGrath (2005): Alice’s neighbor Bob promises Alice that
he will water her plant while she is away on vacation. He doesn’t, and
Alice’s plant dies. Many judge that Bob’s failure to water the plant caused
it to die. Only philosophers in the grip of theory judge that Alice’s other
neighbor, Carlos, caused the plant to die—though the plant’s death
counterfactually depends upon Carlos’s failure to water it every bit as
much as it depends upon Bob’s failure to water it.%” If we suppose that
death and promise breaking are both deviant events, and that survival
and promise-keeping are (more) default, then Bob’s failure to water the
plant is a productive cause of its death. And if we suppose that Carlos’s
failure to water the plantis a default state, then Carlos’s failure to water is
not a productive cause of its death.

If causation is productive causation, this allows us to explain why
switches are not causes (see Hall 2004 and Sartorio 2005). For, while
switches affect the route by which deviancy is transmitted to an effect,
they do not themselves transmit deviancy to the effect.

50. See also the pen case in Hitchcock and Knobe 2009.
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For a concrete case of a switch, consider the neuron system shown
in figure 11a. There, the neuron § is a switch, which can either be set left
(when the variable S is even, as in figures 11b and 11d) or right (when the
variable § is odd, as in figures 11a and 11c). D determines whether the
switch is set left or right. If D fires, then S will be set right; whereas, if D
does not fire, then S will be set left. D does not determine whether S fires
or not. Mdoes that. If Mfires, then S will fire; if M does not fire, then S will
notfire. If § fires while left, then Lwill fire. If S fires while right, then Rwill
fire. And, finally, E will fire iff either L or R does.

For a case with a similar structure, consider:

Doorbells

There are two doorbells—one on the left, and one on the right. The
signal from the button outside passes through a switch, which can have
one of two settings: left or right. If the switch is set to the left and the
button is pressed, the signal will pass to the left, and the left bell will ring. If
the switch is set to the right and the button is pressed, the signal will pass to

(a)§=3 (b) §=2

(D) L

K 123 t3 t 5] n I3 173

Figure 11.  Switch. The neuron S can either be set to the left or to the right. If Dfires, then
it will be set to the right; if D doesn’t fire, then it will be set to the left. S will fire iff M fires.
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the right, and the right bell will ring. If either bell rings, Einstein will bark.
Before leaving that morning, Doc flipped the switch to the right. When
Marty arrives, he presses the button, the right bell rings, and Einstein
barks.

In Doorbells, when Marty presses the button, Einstein will bark—no matter
whether the switch is set to the left or the right. Doc’s flipping the switch
to the right was (along with Marty’s pressing the button) a cause of the
right bell’s ringing, but it was not a cause of Einstein’s barking.51 In
contrast, Marty’s pressing the button was a cause of Einstein’s barking.
Likewise, in figure 11a, while D’s firing was a cause of R’s firing, it was nota
cause of E’s firing. In contrast, M’s firing was a cause of E’s firing.

I’ll assume that both of these systems can be modeled with the

following system of structural equations.52

E=LVR 1
L=8§=2 \3/L\1
R=8=3 1/\

S :=2M +D

Iwill also assume that S = 2 is no more deviant or abnormal than S = 3—
being set to the left is no less normal than being set to the right. With this
assumption, we can show that, while there is a causal network from Mto E,
there is no causal network from D to E.

First, let’s assume that S = 3 is more deviant than §= 1 and that
E =1 is more deviant than £ = 0—in the case of Switch, firing is more
deviant than remaining dormant, or, in the case of Doorbells, directing a
signal right is more deviant than not directing any signal, and barking is
more deviant than not barking. With these assumptions, we can show that
M— S— R— Eis a causal network. For we may assign M, R, and E the
contrast0,and S the contrast 1. Then: £ = 1, rather than 0, depends upon
R =1, rather than 0; R= 1, rather than 0, depends upon S = 3, rather
than 1; and §$= 3, rather than 1, depends upon M = 1, rather than 0.
Relative to this network, S is a departure variable and E its return, but
both S and E have values which are more deviant than their contrasts. So
the network is causal.

51. Of course, the right bell’s ringing was a cause of Einstein’s bark. So, like Boulder,
Short Circuit, and figures 7 and 8, Doorbells provides a counterexample to the transitivity of
causation. See Hall 2004 and Sartorio 2005. Cf. also Pearl 2000 (example 10.3.6) and
Halpern and Pearl 2005.

52. ‘L :=8= 2’ says that L’s value will be the truth-value of the proposition §= 2.
Thatis: L=1ifS=2and L=0if § # 2. Likewise for ‘R:=S5=3".
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The assumptions that § = 3is more deviantthan S= land E = lis
more deviant than £ = 0 aren’t needed to show that there’s a causal
network from M to E. Even if they are not, the network

SN
N

M——->S

will be causal. For we may assign M, R, L, and E the contrast 0, and assign S
the contrast 1 (note that L’s contrastis the same asitsvalue). Then: E= 1,
rather than 0, depends upon (L, R) = (0, 1), rather than (0,0); R=1,
rather than 0, depends upon S = 3, rather than 1; L = 0, rather than 0,
depends upon S = 3, rather than 1; and S = 3, rather than 1, depends
upon M = 1, rather than 0. In this network, there are no departures or
returns, so the network is causal.

In contrast, so long as $ = 3 is no more deviant than § = 2, there
will be no causal network from D to E. We could assign D, R, and E the
contrast 0, and assign S the contrast 2. Then: E= 1, rather than 0,
depends upon R=1, rather than 0; R= 1, rather than 0, depends
upon S = 3, rather than 2; and §= 3, rather than 2, depends upon
D =1, rather than 0. But, relative to the network D— S— R— E, Sisa
departure variable. Since its contrast is no more default than its value, this
network is not causal. Nor is the network

N,
N

D——S

causal. If Dwere to be 0, then S would be 2. And, if S were 2, then Lwould
be 1 and Rwould be 0. So, if the path is to be causal, then (L, R) must be
assigned the contrasts (1, 0). But, if Lwere to be 1 and R were to be 0, then
E would be 1. So E’s contrast would not be distinct from its value. So the
network is not causal.

The upshot is this: if Marty’s pressing the button and Einstein’s
barking are both deviant, noninertial events, then the deviancy of Marty’s
pushing the button will be transferred to Einstein’s barking, via a causal
network. So Marty’s pressing the button will be a productive cause of
Einstein’s barking. On the other hand, so long as the switch’s directing
a signal to the right is no more deviant than its directing a signal to the
left, Doc’s flipping the switch will not transfer any deviancy to Einstein’s
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5] /4y) 5] /4y)

Figure 4.  Omission. Figure 5.  Prevention.

barking. Instead, Doc’s flipping the switch merely diverts the deviancy of
Marty’s pushing the button to the right path. So Doc’s flipping the switch
will not be a productive cause of Einstein’s barking.

If productive causation just is causation, then default, inertial
states can be neither causes nor effects. Assuming that dormancy is the
default state of a neuron, this means that C’s dormancy does not cause £
to fire in the case of Omission from figure 4, nor does C’s firing cause E to
not fire in the case of Prevention from figure 5 (both reproduced here) .
If we find these consequences unacceptable, and we wish to insist that
Prevention and Omission are both species of causation, then we may prefer
the following theory of causation:

Given a causal model M containing the variables in C and E, C=c s a
cause of /= ¢ in M iff, in M, there is a minimal causal network leading
from C to E.

53. Both of these verdicts have defenders in the literature. Personally, I find the
second verdict less intuitive than the first. I am currently inclined toward classifying C’s
firing as a productive cause of E’s failure to fire in Prevention by appealing to a more
nuanced account of when a variable value is noninertial. By way of explanation: I've
some inclination to say that it would have been inertial for E to fire, given that A fired;
and thus, that E’s failure to fire was a departure from that inertial behavior. (See note 12.)
However, I won’t explore this proposal any further here.

I call figure 4 a case of omission simply because C’s failure to fire is an omission, and E’s
firing counterfactually depends upon this omission. I don’t mean for the label to imply
that this is an instance of causation by omission. Similarly, I call figure 5 a case of prevention
merely because I's failure to fire counterfactually depends upon C’s firing. I don’t mean
for the label ‘prevention’ to imply that this is an instance of causation, either.
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Alternatively, we could allow C, but not E, to take on default values or
more deviant contrasts. Or we could allow E, but not C, to take on a
default value or a more deviant contrast. Because minimal causal net-
works are model-invariant (see proposition A.2 in the appendix), any
of these accounts would be model-invariant. The kinds of values and
contrasts we tolerate in our causes and effects is a free parameter of the
theory.

Iwill say thata causal network, N, from C to E is minimal iff there is
no proper subnetwork of N, leading from any subtuple of C to E, which is
itself a causal network. In order for C to cause E, they must be connected
by a minimal causal network. To understand why, return to the case of
Switch from figure 11a. While there is no causal network leading from Dto
E, there is a causal network leading from the pair (D, M) to E:

Assign each of D, M, S, R, and E the contrast 0. Then, E = 1, rather than 0,
depends upon R = 1, rather than 0; R = 1, rather than 0, depends upon
S§=3, rather than 0; and S$=3, rather than 0, depends upon
(D,M) = (1,1), rather than (0,0). In this network, § is a departure
with return E, but both § and E have values more deviant than their
contrasts. So this is a causal network. But D is not a joint cause of E’s
firing, along with M. For M— §— R— E is a subnetwork of the causal
network leading from (D, M) to E, and this subnetwork is causal. Requir-
ing a causal network to be minimal prevents us from saying that D’s firing
isajoint cause of I’s firing. More generally, it prevents us from counting as
ajoint cause anyirrelevant factor ‘free riding’ on a causal network which it
did nothing to help forge. In order to share in a causal network as a joint
cause, you have to pull your weight.

Some theories impose a minimality condition on the variables in
C. They say that C caused E only if no proper subtuple of C caused E (see,
e.g., Halpern and Pearl 2001, 2005; Halpern 2016). These theories face
difficulties with neuron systems like the one shown in figure 12. There,
C’s firing is a joint cause of s firing. It, together with A, causes E to fire.
However, if we were to impose a minimality condition on the variables in
C, our theory would disagree. For even though there is a causal network
from (A, C) to E,namely A — E «— C, thereis also a causal network from A
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51 ) 13
Figure 12.

alone to E, namely, A— C— E «— A.5* Though the tuple (A, C) is not
minimal, the network A— E «— C is minimal. So our theory tells us, cor-
rectly, that A and C jointly caused E to fire. (And also that A individually
caused E to fire.)

Appendix. Technicalities

A notational convention: throughout this appendix, I will write things
like ‘¢, ¢*) locally depends upon {c, ¢*)’ to mean that E = ¢, rather than ¢,
locally depends upon C = ¢, rather than c”.

Proposition A.1. [f M E C=c* O— E # ¢ then there is a causal network
Jfrom some subtuple of C to E in M.

Proof. Let N be the union of every directed path leading from a member
of C to E. We will show thatif M E C=c¢"[0— E # ¢ then N is a causal
network. (Since not every C € Cis guaranteed to be an ancestor of £, N
may not be a causal network from C to E, but it will be a causal network
from some subtuple of C to L.) Firstly, note that there are no departure or
return variables on JN. For suppose there were a departure variable D
with return R. Then, there would be a directed path from D to R,
D— O0;— O,— ...— Oy— R, which is not included in /N'. But there
is a directed path from some member of C to D, and a directed path from
Rto E. So there is a directed path from some member of C to E which goes
by way of the path D— O; — O,— ... — Oy— R.Since NN includes every
directed path from C to E, this path must be included in N'. Contradic-
tion. So there can be no departure or return variables on N For every
variable Vin the network N, let ‘v’ be its actual value, and let its desig-
nated contrast, ‘v”’, be the value it takes on in the counterfactual model
M[C — c*].Since M[C — ¢*] E E # ¢, ¢ # ¢ and E’s contrast is distinct

54. I owe the objection to Ian Rosenberg and Clark Glymour (2018).
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from its value. Now, take an arbitrary D € Cwhich liesin N'. We now show
that D’s value, rather than its contrast, locally depends upon its N-
parents’ values, rather than their contrasts. Let P be the parents of D
which lie in the network 2N, and let P be the parents of D which do not
lie in the network N. By the construction of N, P are not causal
descendants of any member of C. So, in the counterfactual model M[C —
c], P take on their actual values, p—;. Since M[C — c1ED=d",

So (d, d") locally depends upon (par, pa.). D was arbitrary, so the same
goes for every variable in the network N, exceptfor those in C. So there is
a causal network running from (some subtuple of) C to E. O

Remark. The proposition shows us that counterfactual dependence suf-
fices for a causal network, but this causal network need not be minimal. If
Cis asingleton, however, then counterfactual dependence will suffice for
a minimal causal network. For counterfactual dependence of E£= ¢ on
C = ¢means that there is some causal network from C to E. Perhaps this
network is not minimal, but no matter—if it is not minimal, then some
subnetwork of it will be both causal and minimal. So there will be some
minimal causal network from C to E.

Lemma A.l. Given a causal model M = (U,u,V,E,=), with U U,
CCUUVEEV,and U& C, N is a causal network from C to E in M iff
N is a causal network Jrom G to E in MY

Proof. Suppose that N is a causal network from C to E in M. The exogen-
ous U € U will not be in this network, so removing it will not affect any of
the local dependence relationships between any of the variables in N
Nor will it affect whether any departure or return variables along N have
values more deviant than their contrasts. So N will be a causal network
from Cto Ein M™Y. Suppose, on the other hand, that /N was not a causal
network from C to E in M. If 2N is a network from C to E, then the
exogenous U € U is not on this network, and removing it will not affect
the local dependence relationships between any of the variables on 2N,
nor whether any departure and return variables have values more deviant
than their contrasts. So removing U will not make N into a causal
network from C to E. So N will not be a causal network from C to E in
MY O
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A Model-Invariant Theory of Causation

Definition A.1. If Vis an interpolated variable in M with parent Pa and
child Ch, and 2N is a network in M (which may or may not contain the
directed edges Pa— Vand V— Ch), then let N — Vbe the network in
MV defined as follows: if Vlies along NV, then N — Vis N, minus the
directed edges Pa— V and V— Ch, and plus the new directed edge
Pa— Ch; and if Vdoes not lie along N, then N — V is just N

Definition A.2. If Vis an interpolated variable in M with parent Pa and
child Ch, and 2N is a network in M~" (which may or may not contain the
directed edge Pa— Ch), then let N 4 V be the network in M defined as
follows: if N includes Pa — Ch, then N + Vis 2N, minus Pa — Ch, and
plus the directed edges Pa — Vand V— Ch; and if N does not include
Pa— Ch, then N + Visjust N.

Lemma A.2. Given a causal model M = (U,u,V,E, =), with VEY,
CCUUVEEV, and V& CU (E), if Vis inessential in M, then: (a) if
N is a causal network from C to E inM, then N — Vis a causal network from C
toE inM™Y; and (b) if N is a causal network from C to E inM ™", then N + Viis
a causal network from G to E in M.

Proof. Start with part (a). Suppose that N is a causal network from C to E
in M. Since Visinessential, it has a single parent, Pa, and asingle child, Ch
(and Pais nota parent of Ch). Let their actual values in M be v, pa, and ch,
respectively. There are two possibilities: either (A) V does not lie on N,
or (B) it does. In case (A), removing Vmay introduce new local depend-
ence relationships between Pa and Ch, but it will not alter any local
dependence relations between any of the variables on N and their N-
parents. Since, in M, each variable in N, rather than its contrast, locally
depends upon its N -parents’ values, rather than their contrasts, in MY,
each variable in N — V = N, rather than its contrast, will still locally
depend upon its N — Vparents’ values, rather than their contrasts. For
any departure or return variables in N, removing Vwill not affect wheth-
er these variables are departure/return variables, nor whether their
values are more deviant than their contrasts. So, in case (A), N —V
will be a causal network in M™Y. In case (B), V lies on N. Then, Pa and
Ch must lie on N as well. Let Ry, be Ch’s causal parents other than Vthat
lie in the network N (if such there be); let their actual values be rar and
their designated contrasts, rz\r. Similarly, let Rz be CI’s causal parents
that don’t lie on the network N (if such there be), and let their actual
values be raz. Then, in M, there are some v", pa”, and c&” such that{ch, ch")
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locally depends upon (ra U (v), r;[ U (v")) and (v, v") locally depends
upon {pa, pa’). Since Pais V’s only parent, we can conclude that

(1) v(pa™) = v~

And since (ch, ¢h*) locally depends upon (ra U (v), r}v U (v™)), we can
conclude that

(2) pan (V" 1, 130) = ch”

By the construction of MY, it contains the structural equation

Ch:= ¢ci (Pv (Pa), Ry, R55)
Note that from (1) and (2), it follows that
don (v (pa™),xo,, 157 = ch

So,in M"Y (ch, ch*) locally depends upon (r 5 U (pa), r*N U (pa™)). Remo-
ving Vwill not affect whether any variables are departure or return vari-
ables, relative to N, nor whether departure and return variables have
values more deviant than their contrasts. So N'— Vwill be a causal net-
work in MY,

To establish part (b), suppose that N is a causal network from C to
Ein M™% N either (A) includes the directed edge Pa— Ch, or (B) it
doesn’t. If (A), then there must be some pa”, ¢k, and rzv such that
(ch, ch™) locally depends upon (ra U (pa), ra, U (pa™)). (Ra are Ch’s
N -parents other than Pa, if such there be.) So

(3) ban (v (pa*), K, r30) = ch’

(R are the parents of Ch which do not lie on the network 2N, if such
there be.) Let v be the value of V such that v* = ¢(pa”). Then, it
follows from (3) that (ch, ¢k") will locally depend upon (ra U (v), r'y, U
(v™)) in M. Including V will not affect which variables are departure/re-
turn variables, nor whether their values are more deviant than their con-
trasts. So N 4+ Vwill be a causal network from C to E in M. If (B), then
N 4+ V= N will also be a causal network from C to E in M, since includ-
ing the interpolated variable V will not alter any of the local dependence
relationships among any of the variables other than Paand Ch, nor will it
affect which variables are departure/returns relative to N, nor whether
their values are more deviant than their contrasts. O
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A Model-Invariant Theory of Causation

Proposition A.2. Minimal causal networks are model-invariant. That is: (a)
given a causal modelM = (U,u,V.E,=), with U U,C C UUYV,E€E€Y,
and U & C, there is a minimal causal network from G to E in M iff there is a
minimal causal network from C to E in M™Y, and (b) given a causal model
M= UuVE, =), withVEV,C CUUV,EEV, and V& CU (E), if
Vis inessential in M, then there is a minimal causal network from C to E in M iff
there is a minimal causal network from C to E in M.

Proof. Begin with part (b): suppose there is a minimal causal network from
C to E in M. Then, there is a causal network, N, from C to E in M, and
there is no proper subnetwork of N, from any subtuple of C to E in M. By
lemma A.2, N — V is a causal network in M™Y. Suppose (for reductio)
that this causal network is not minimal. Then, there is some proper sub-
network of N — V, N'*, from some subtuple of C to E in M~" which is
causal. By lemma A.2, '™ + Vis a causal network in M. If N is a proper
subnetwork of N” — Vin MY, then N * + Vis a proper subnetwork of N’
in M. So in M there is a proper subnetwork of NV, from some subtuple of C
to E, which is causal. So N is not a minimal causal network in M. Contra-
diction. So N' — Vis a minimal causal network in M.

Going in the other direction, suppose that there is a minimal
causal network from C to E in M™Y. So there is a causal network, N, in
MY, and there is no proper subnetwork of N, from any subtuple of C to
E in M™% By lemma A.2, N + Vis a causal network in M. Suppose (for
reductio) that this causal network is not minimal. Then, there is some
proper subnetwork of N, N, from some subtuple of C to E in M, which
is causal. By lemma A.2, N'* — Vis a causal network from some subtuple
of C to E in M™Y. If N is a proper subnetwork of N+ Vin M, then
N ¥ — Visaproper subnetwork of N in M~". So in M~ there is a proper
subnetwork of N, from some subtuple of C to E, which is causal. So N is
not a minimal causal network in M™Y. Contradiction. So N + Vis a min-
imal causal network from C to E in M.

The proof of part (a) is exactly the same, with lemma A.2 swapped
out forlemmaA.1,M~"V swapped out for MYN-—Vand N +V swap-
ped out for N,and N * — Vand N * + Vswapped out for N *. O
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