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How domultiple reasons combine to support a conclusion about what to do or be-
lieve? This question raises two challenges: (1) How can we represent the strength
of a reason? (2) How do the strengths of multiple reasons combine? Analogous
challenges about confirmation have been answered using probabilistic tools. Can
reductive andnonreductive theories of reasons use these tools to answer their chal-
lenges? Yes, or more exactly: reductive theories can answer both challenges. Non-
reductive theories, with the help of a (new?) result in confirmation theory, can an-
swer one, and there are grounds for optimism that they can answer the other.
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I. INTRODUCTION

A popular albeit controversial idea in moral philosophy is that what we
ought to do can be explained by our reasons.1 One challenge for this view
is to provide illuminating explanations of what we ought to do in cases
where multiple reasons combine to support an act. We can illustrate this
by considering the following example:
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There is a movie theater and a restaurant across town. And suppose
that in order to get to that side of town I must cross a bridge that has
a $25 toll. The toll is a reason not to cross the bridge. The movie is a
reason to cross the bridge and the restaurant is also a reason to cross
the bridge. Itmay be that if therewere just themovie to see, it wouldn’t
be worth it to pay the toll and if there were just the restaurant, it
wouldn’t be worth it to pay the toll. But given that there is both the
movie and the restaurant, it is worth it to pay the toll.2
In this case, the movie theater provides a reason to cross the bridge, the
restaurant provides a reason to cross the bridge, and the toll provides a rea-
son to not cross the bridge. Individually, the reason provided by the restau-
rant is worse than the reason provided by the toll, and the reason provided
by themovie is worse than the reason provided by the toll. But the two rea-
sons to cross the bridge together—what is sometimes called the “accrual”
of these reasons—are better than the reason provided by the toll.

Cases of this sort are ubiquitous and arise not just for action but also
for belief. Here is another example:
I am curious about what color the feathers of a certain bird are. My
friend seems to remember reading in a textbook that they are black. I
seem to remember seeing in a nature documentary that they are
white. I also seem to remember seeing in the travel guide that they
are white. It may be that my friend’s memory based on the textbook
is a better reason to believe that the feathers are black thanmymem-
ory of the documentary or the travel guide taken individually. But it
. This idea appears (in different terminology) at least as early as W. D. Ross, The Right
e Good (Oxford: Oxford University Press, 1930). Other important discussions include
an Dancy, Ethics without Principles (Oxford: Oxford University Press, 2004); Jean
ton, The Authority of Reason (Cambridge: Cambridge University Press, 1998); Thomas
, The Possibility of Altruism (Princeton, NJ: Princeton University Press, 1970); Derek
, On What Matters (Oxford: Oxford University Press, 2011); Joseph Raz, Practical Rea-
and Norms (1975; repr., Oxford: Oxford University Press, 2002); Thomas Scanlon,
We Owe to Each Other (Cambridge, MA: Belknap, 1998); and Mark Schroeder, Slaves
Passions (Oxford: Oxford University Press, 2007).
. Shyam Nair, “How Do Reasons Accrue?,” in Weighing Reason, ed. Errol Lord and
Maguire (New York: Oxford University Press, 2016), 56–73, 56.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FCBO9780511625213&citationId=p_n_3
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may be that together these reasons to believe that the feathers are
white are better than the reason to believe that the feathers are black
so that I have more reason to believe that the feathers are white.3
If we also accept the idea that what we ought to believe canbe explained in
terms of reasons, then we would like to understand how reasons combine
in these cases as well.

My goal in this article is to explain the challenge posed by cases of
accrual and to develop some strategies for meeting this challenge. But
an important complication arises immediately: Philosophers with very dif-
ferent theoretical commitments accept the idea that reasons explain what
we ought to do and believe. In particular, some philosophers who accept
this idea are reductivists (they believe reasons are reducible to other nor-
mative properties or facts or to other nonnormative properties or facts),
while others are nonreductivists (they believe reasons are not reducible to
any other normative or nonnormative fact or property).4 Accordingly,
the strategies for meeting this challenge must be sensitive to these differ-
ences. Indeed, much of this article is dedicated to this task.

Here’s my plan: In reflecting on our examples above, we encoun-
tered the challenge of providing illuminating explanations of what we
ought to door believe in cases wheremultiple reasons combine to support
an act or belief. I will show how this actually factors into two distinct but
related challenges posed by cases of accrual (Sec. II). I then observe that
analogous issues about how pieces of evidence confirm hypotheses have
been fruitfully explored using probabilities (Sec. III). With this back-
ground in hand, the central issue of the article is whether reductive and
nonreductive theories can make use of these probabilistic tools. It turns
out that both theories can but in different ways. Reductive theories can
. Ibid., 57.

. For theories that reduce reasons to some nonnormative notion, see Stephen Finlay,
sion of Tongues (New York: Oxford University Press, 2014); and Schroeder, Slaves of the
ns. For theories that reduce reasons to some normative notion, see Barry Maguire,
Value-Based Theory of Reasons,” Ergo 3 (2016): 233–62; Conor McHugh and Jonathan
Fittingness First,” Ethics 126 (2016): 575–606; Douglas Portmore, Commonsense Conse-
alism: Wherein Morality Meets Rationality (New York: Oxford University Press, 2011); Kie-
tiya, “What Is a Reason to Act,” Philosophical Studies 167 (2014): 221–35;Michael Smith,
oral Problem (Oxford: Blackwell, 1994); and Ralph Wedgwood, “Intrinsic Values and
ns for Action,” Philosophical Issues 19 (2009): 321–42. For theories that are nonreduc-
ee Dancy, Ethics without Principles; Scanlon, What We Owe to Each Other; and Parfit, On
Matters.
he distinction between reducibility, analyzability, fundamentality, grounding, meta-
al dependence, etc., will notmatter for our purposes. So I will also call theories accord-
which reasons are analyzable, nonfundamental, grounded,metaphysically dependent,
eductive theories of reasons. On the other hand, nonreductive theories are theories
ding to which reasons are not analyzable, are fundamental, are not grounded, and
etaphysically independent.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1533-6077.2009.00172.x&citationId=p_n_18
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Facprof%3Aoso%2F9780199347490.001.0001&citationId=p_n_12
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F684712&citationId=p_n_15
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relatively straightforwardly make use of these tools to answer both chal-
lenges posed by cases of accrual (Sec. IV). But the situation is more com-
plicated for nonreductive theories (Sec. V). For nonreductive theories of
reasons for belief, the issue turns on certain (until-now-unanswered?)
questions in the probabilistic theory of confirmation. But I present results
that answer these questions. For nonreductive theories of reasons for ac-
tion, this same approach will not work because there are structural differ-
ences between reasons for action and probabilities. But recent work from
Itai Sher develops a decision-theoretic account that can accommodate
these differences.5 Nonetheless, both of these approaches for the nonre-
ductivist require the assumption that the strength of reasons can be nu-
merically represented. By contrast, this claim is a result of the reductivist
account rather than an assumption it has to posit.6

Though the topic of this article is obviously relevant for those who
think that reasons explain what we ought to do and believe, it should also
be of interest to anyone who thinks that there is some systematic theory
about the interaction of reasons (even if reasons do not explain what we
ought to do and believe)7 and to anyone who is interested in confirmation
theory (especially Sec. V.A and appendix A). Furthermore, though our fo-
cus is on answering the two challenges posed by cases of accrual, the ideas
here also have methodological implications. For instance, it turns out that
although sometimes two reasons are better than one, this is not always so.
This means that even if we have some example where we know the strength
of two reasons individually, there are still further questions to ask about the
strengths of these reasons. Do we, as theorists, have free reign to choose
whether the two reasons together are better than each individually? Do we
5. Itai Sher, “Comparative Value and the Weight of Reasons,” Economics and Philosophy
35 (2019): 103–58.

6. Though this article primarily concerns the prospects of probabilistic approaches,
n. 60 briefly discusses qualitative accounts such as those from the default logic and argumen-
tation theory traditions, as well as Nair, “How Do Reasons Accrue?”; and Barry Maguire and
Justin Snedegar, “Normative Metaphysics for Accountants,” Philosophical Studies 178 (2021):
363–84. As mentioned above, Sec. V.B also discusses a decision-theoretic rather than purely
probabilistic account.

7. Thanks to the referee who encouraged me to emphasize this. Some distinctions due
to Selim Berker (“A Combinatorial Argument against Practical Reasons for Belief,” Analytic
Philosophy 59 [2018]: 427–70) can make this point more vivid. Berker observes that what he
had called in earlier work (Selim Berker, “Particular Reasons,” Ethics 118 [2007]: 109–39) a
“combinatorial function”—a function that maps individual reasons and their strengths to
verdicts about what we ought to do—can be thought of as a composition of two other func-
tions. The first is what he calls an “aggregation function,”whichmaps individual reasons and
their strengths to results about how strongly supported by the reasons overall each act or
belief is. The other is a “comparison function” that maps the outputs of the first function
to verdicts about what we ought to do or believe. The issues here are most directly about
Berker’s aggregation function.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FS0266267118000160&citationId=p_n_23
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2Fs11098-020-01435-w&citationId=p_n_25
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have free reign to choose howmuch better? If not, what do these choices
depend on?8 The ideas developed here answer these questions.9

II. THE ACCRUAL OF REASONS: TWO CHALLENGES

In cases like the ones from the beginning of the article, we would like to
know how the strength of the accrual is related to the strength of its mem-
bers. Offhand, it seems that the strength of the two reasons together to
cross the bridge is some kind of increasing function of the strength of
the reasons individually. Indeed, itmay be tempting to say that the strength
of an accrual is somehow the sum of the strengths of its members.

If we take talk of the “sum of strengths” at face value, it presupposes
that the strength of a reason is somehow sensibly represented by a num-
ber. But since we have no pretheoretical grip on how to construct such
a numerical representation, it is a pressing question whether strengths
can be numerically represented and what the basis for such a representa-
tion might be.

If, on the other hand, the strengths of reasons cannot be numerically
represented, it is a pressing question how to state in purely qualitative
terms the relationship between the strength of an accrual and the strengths
of its members. For example, it is not enough to say that the accrual of rea-
sons to cross the bridge is stronger than the individual reasons. We must
also somehow translate into qualitative terms the idea that the extent to
which the accrual is strongermakes it so that the reasons together to cross
the bridge are stronger than the reason to not cross the bridge.10

This, then, is the first challenge posed by cases of accrual: We must
determine a suitable way of representing the strengths of reasons that
allows us to understand how the strength of the accrual in certain cases is
8. To illustrate, suppose an agent faces a choice to do act A that saves a person x or do
act B that saves persons y and z. There are various theories about whether the fact that some
act will save a life provides a reason. But suppose we consider a theory according to which the
fact that doing A will save x is a reason to do A, the fact that doing B will save y is a reason to do
B, and the fact that doing B will save z is a reason to do B. And suppose further that the theory
says that these reasons are each individually exactly as strong as one another. Given these as-
sumptions, does the general theory of how reasons interact settle whether the individual rea-
sons to do B together also provide a reason to do B? If so, does it settle how strongly the rea-
sons together support doing B?Or, instead, do we need tomake further assumptions in order
to settle whether and how strongly the reasons together support doing B?

9. The answers that follow from the accounts developed below are “no,” “no,” and
“each strategy gives its own (somewhat precise) answer to which factors these choices de-
pend on.”

10. N. 60 discusses this and related concerns for theories of accrual that do not in-
volve numerical representation. That said, the best-developed views for understanding cer-
tain features of reasons (e.g., undercutting, attenuation, and intensifying) are views such as
those of John Horty (Reasons as Defaults [Oxford: Oxford University Press, 2012]) that do
not involve numerical representation.



Nair “Adding Up” Reasons 43
the right sort of increasing function of the strengths of its members. And
wemust provide some basis for such a representation.11

The second challenge concerns sorting different cases of accrual. As
wehave seen, there are cases where a collection of reasons to do a given act
has a strength that is (strictly) greater than the strength of any individual
reason. But sometimes the strength of a collection is not (strictly) greater
than the strength of each individual reason.

The literature on this topic includes a variety of cases that illustrate
this, including putative cases where the collection is exactly as strong as
an individual reason, where the collection provides a reason that is weaker
than the individual reasons (and perhaps supports an incompatible act),
and where the collection provides no reason at all. It is perhaps simplest
to start by illustrating this with theminimal variant of the case involving rea-
sons for action that we began the article with: “As before, the toll is $25 dol-
lars, as before, there is a restaurant and a movie theater that I can access
only by paying this toll. But in this case, let’s suppose that the movie only
has one showing and the restaurant only has one seating and they are at
the same time so that I cannot attend both. Still, the movie is a reason
to cross the bridge and the restaurant is a reason to cross the bridge. But
the accrual of these reasons is not any stronger than these reasons indi-
vidually.”12 We can then consider the following case involving reasons for
belief:
1
reason
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You know that John and Bill are rarely found together—they dislike
each other and make it a point to avoid each other. There is a party
this week and you are wondering whether John or Bill but not both
John and Bill will attend. In this setting finding out Johnwill attend is
a reason to believe that JohnorBill but not bothwill attend. Similarly,
finding out Bill will attend is also a reason to believe John or Bill but
not both will attend. . . . But their accrual is not a reason to believe
John or Bill but not both will attend.13
And finally we can consider the following sampling of cases to get a sense
of the variety of examples that have been offered:
Consider by way of example two reasons not to go jogging, viz. that it
is hot and that it is raining. For a particular runner the combination
of heat and rain may be less unpleasant than heat or rain alone so
1. Issues about numerical representation or measurability regarding the strength of
s are mentioned (in different terminology) as early as Robert Nozick, “Moral Com-
ions and Moral Structures,” Natural Law Forum 13 (1968): 1–50. See David Krantz
Foundations of Measurement, vol. 1 (Mineola: Dover, 2007), for a general introduction
ilosophical and formal issues related to measurability.
2. Nair, “How Do Reasons Accrue?,” 66.
3. Ibid., 59–60.
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that the accrual is a weaker reason not to go running than the accru-
ing reasons. And for another jogger the combination of heat and
rain may be so pleasant that it is instead a reason to go jogging.14

Suppose, for example, that Symptom 1 is a reason for the administra-
tion of Drug A, since it suggests Disease 1, for which Drug A is appro-
priate, and that Symptom 2 is also a reason for the administration
of Drug A, since it suggests Disease 2, for which Drug A is also appro-
priate; still, it might be that Symptoms 1 and 2 appearing together
suggest Disease 3, for which Drug A is not appropriate.15

Suppose that I have a disease. My doctor proposes a treatment, and
the question I am considering is, “Should I take the treatment?” . . .
Suppose thatR1 is now the proposition that the treatment would pro-
long my life by at least 1 year, and R2 is the proposition that the treat-
ment would prolongmy life by at least 2 years. . . . The sum w1 1 w2

of the weights of reasons R1 and R2 does not represent a meaning-
ful quantity. This sum double counts the weight of the fact that the
treatment will prolong my life by at least one year, as this fact is en-
tailed by both R1 and R2.16
While there are ways of resisting the force of these putative cases in which
the strength of the accrual is not greater than the strengths of the individ-
ual reasons, I will not discuss these here. I take it that the diversity of form
and subjectmatter of these cases will allowdifferent readers to find at least
one to agree with. In any event, their diversity of form and subject matter
makes it apparent that something substantive must be said to explain the
difference—whether genuine or merely apparent—between these cases
and cases where the accrual of reasons has a strength that is greater than
the strengths of its members. This is the second challenge posed by cases
of accrual. If one has answered the first challenge by providing a suitable
representation of the strength of reasons, the second challenge is to show
that this representation allows “adding up” in the correct cases and deals
with the range of possible cases in which “adding up” does not occur.17
4. Henry Prakken, “A Study of Accrual of Arguments,” in Proceedings of Tenth Interna-
Conference on Artificial Intelligence and Law (New York: Association for Computing
inery, 2005), 85–94, sec. 3.1. Cf. Henry Prakken and Giovanni Sartor, “Modelling Rea-
g with Precedents in a Formal Dialogue Game,” Artificial Intelligence and Law 6 (1998):
7, 271–72; and Henry Prakken and Giovanni Sartor, “A Dialectical Model of Assessing
icting Arguments in Legal Reasoning,” Artificial Intelligence and Law 4 (1996): 331–68, 364.
5. Horty, Reasons as Defaults, 61.
6. Sher, “Comparative Value,” 104–5.
7. The answers to these challenges that we consider below assume a simple theory ac-
g to which reasons can be directly compared as better than or worse than or equally
as one another. This ignores a number of complications. For example, Patricia Green-
has argued that reason against an act and reason for refraining from doing the act

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1145%2F1165485.1165500&citationId=p_n_35
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1145%2F1165485.1165500&citationId=p_n_35
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1145%2F1165485.1165500&citationId=p_n_35
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1008223408127&citationId=p_n_36
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF00118496&citationId=p_n_37
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III. HOW CONFIRMATION THEORY MEETS THE
CONFIRMATION ANALOGUES OF THESE CHALLENGES

An issue analogous to the issue of the accrual of reasons is that sometimes
two pieces of evidence may confirm a theory more than one. But other
times they may not. As it turns out, theories of confirmation that make
use of probabilities are capable of shedding light on this phenomenon.18

A. Probabilities, Confidences, and Confirmation

To start, we need to state what a probability function is. For our purposes,
a probability function is any function that assigns (real) numbers to (an
algebra of) propositions in a way that obeys the following axioms:
1
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Nonnegativity: PrðAÞ ≥ 0 for any A.

Normalization: Prð⊤Þ 5 1 where ⊤ is a logical truth.

Finite Additivity: PrðA ∨ BÞ 5 Pr ðAÞ 1 Pr ðBÞ for any A, B
such that A ∧ B is a logical falsehood.

Ratio: PrðA ∣ BÞ 5 PrðA ∧ BÞ
PrðBÞ when Pr ðBÞ ≠ 0.
This purely formal definition of a probability function tells us little of in-
terest on its own.

There are, however, interesting philosophical arguments that pur-
port to show that the confidences of a rational agent can be represented
by a probability function. According to these arguments, a rational agent,
S, who is very confident, for example, that it will snow tomorrow can
have her confidence represented by a probability function, PrS, accord-
ing to which Pr(It will snow tomorrow) is some number close to 1. Rational
agents also have conditional confidence. So while S may have very little
confidence that it will rain tomorrow (so Pr(It will rain tomorrow) is low),
8. Thanks to Kenny Easwaran for encouraging me to pursue this approach.

be distinguished; Patricia Greenspan, “Asymmetrical Practical Reasons,” in Experience and
sis: Proceedings of the 27th International Wittgenstein Symposium, ed. M. E. Reicher and
arek (Vienna: oebv&hpt, 2005), 387–94;PatriciaGreenspan, “PracticalReasons andMoral
t,’” in Oxford Studies in Metaethics, ed. Russ Schafer-Landau (Oxford: Oxford University
2007), 2:172–94; Patricia Greenspan, “Making Room for Options,” Social Philosophy and
27 (2010): 181–205. Cf. Joshua Gert, “Requiring and Justifying: Two Dimensions of Nor-
Strength,” Erkenntnis 59 (2003): 5–36; and Justin Snedgar, “Reasons for and Reasons

st,” Philosophical Studies 175 (2018): 725–43. And a variety of philosophers have argued
me reasons are incommensurable; see Ruth Chang, ed., Incommensurability, Incompara-
nd Practical Reason (Cambridge, MA: Harvard University Press, 1997), for a classic collec-
n this topic. Though these are serious complications, I think it is good to approach our
m by first seeing how simple views can address it.
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she may nonetheless be very confident that it will rain tomorrow condi-
tional on the meteorologist saying that it will rain tomorrow. This can be
represented by

PrSðIt will  rain tomorrow ∣ The  meteorologist  says that it will  rain tomorrowÞ
taking some value close to 1. In my stipulative usage, a Bayesian interpre-
tation of a given probability function is one on which the function is un-
derstood to represent these kinds of states of an agent.

Importantly, Bayesians have arguments that explain why it is sensible
to represent a state of confidence with a probability function. Unfortu-
nately, we do not have the space to consider even the basic details of these
arguments. But it suffices for now to know the general strategy behind
them. The arguments work by providing a set of axioms characterizing ra-
tional confidences that are qualitative (e.g., if you aremore confident inA
than in B and you are more confident in B than in C, then you are more
confident inA than inC). They then show that a particular kind of numer-
ical representation is, in a certain sense, equivalent to this qualitatively
characterized notion of rational confidence. This set of qualitative axi-
oms, then, is the sensible basis of the numerical representation.19

If we have a Bayesian interpretation of a given probability function,
we can say something interesting about confirmation. The idea is that we
19. The historically most prominent arguments supporting the Bayesian view have
not focused on an epistemic state of confidence. Rather, they have focused on the idea that
a probability function is one of a pair of functions (the other being a utility function) that
represents the preferences of a rational agent. Important representation theorems in this
tradition include Ramsey’s representation theorem (Frank Ramsey, “Truth and Probabil-
ity,” in The Foundations of Mathematics and other Logical Essays, ed. R. B. Braithwaite [1923;
repr., New York: Hartcourt Brace, 1931], 156–98), Savage’s representation theorem (Leo-
nard Savage, The Foundations of Statistics, 2nd ed. [New York: Dover, 1972]), Jeffrey-Bolker’s
representation theorem for evidential decision theory (Richard Jeffrey, Logic of Decision,
2nd ed. [Chicago: Chicago University Press, 1990]), and Armendt’s and Gibbard’s repre-
sentation theorems for causal decision theory (Brad Armendt, “A Foundation for Causal
Decision Theory,” Topoi 15 [1986]: 3–19; Allan Gibbard, “A Characterization of Decision
Matrices that Yield Instrumental Expected Utility,” in Recent Developments in the Foundations
of Utility and Risk Theory, ed. Luciano Daboni, Aldo Montesano, and Marji Lines [Dor-
drecht: Reidel, 1986], 139–48). See James Joyce, The Foundations of Causal Decision Theory
(Cambridge: Cambridge University Press, 1999), esp. chap. 7, for useful discussion.

That said, there are also results that can be understood as directly about states of con-
fidence. These are results from the comparative probability tradition initiated by Bruno de
Finetti. Though the first representation theorem in this family is Charles Kraft, John Pratt,
and A. Seidenberg, “Intuitive Probability on Finite Sets,” Annals of Mathematical Statistics 30
(1959): 408–19, these results have come to be closely associated with Dana Scott (Dana
Scott, “Measurement Structures and Linear Inequalities,” Journal of Mathematical Psychology 1
[1964]: 233–47) owing to Scott’s elegant way of axiomatizing confidences. For a contem-
porary survey that also breaks new ground, see Jason Konek, “Comparative Probabilities,”
in The Open Handbook of Formal Epistemolog, ed. Richard Pettigrew and Jonathan Weisberg
(PhilPapers Foundation, 2019), 267–348.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-94-009-4616-3_8&citationId=p_n_43
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-94-009-4616-3_8&citationId=p_n_43
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-94-009-4616-3_8&citationId=p_n_43
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FCBO9780511498497&citationId=p_n_44
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1214%2Faoms%2F1177706260&citationId=p_n_46
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can determine whether some E (e.g., that the meteorologist says that it
will rain) confirms some hypothesis H (e.g., that it will rain) for you by
comparing your confidence in H (it raining) with your conditional con-
fidence in H on E (it raining given that the meteorologist says that it will
rain). If you are more confident in H on E than you are in H, then plau-
sibly E confirms H for you. If we use PrS to represent S’s confidences, we
can state this analysis as follows:
2
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What it is for E to confirm H for S is for PrSðH ∣ EÞ > PrSðH Þ.
This gives us a theory of when a piece of evidence confirms a hypothesis.
But it does not tell us how much a piece of evidence confirms a hy-

pothesis. As it turns out, there are different measures that have been pro-
posed to answer this question. For example, one approach is that we just
look at the difference in your confidence in H and your confidence in H
on E.

But for the purposes of our discussion, it proves convenient to focus on
another confirmation measure that will initially seem less straightforward:
Log Likelihood Measure: lðH , EÞ 5 log Pr ðE ∣HÞ
Pr ðE ∣ :HÞ

��
.

There is much to be said about this measure and why it is, despite how it
might seem at first, quite intuitive.20
0. Let’s start with an example. Suppose you are wondering whether it will rain and
ering consulting the meteorologist. Suppose further your conditional confidence
e meteorologist says that it will rain on it raining is the same as your conditional con-
e that the meteorologist says that it will rain on it not raining. This is a kind of skep-
about the reliability of themeteorologist. So it is natural to take this to mean that you
regard the meteorologist saying that it will rain as providing confirmation for the
that it will rain.
ut consider another set of attitudes that you might have about what the meteorolo-
ys. You might be way more confident that the meteorologist says that it will rain on it
g than you are confident that the meteorologist says that it will rain on it not raining.
you seem to regard the meteorologist saying that it will rain as providing confirma-
f it raining. And it also seems like if you are ten times more confident in the mete-
gist saying that it will rain on it raining than in the meteorologist saying that it will
n it not raining, you regard it as very good evidence. On the other hand, if you
ly twice as confident, you regard it as good evidence but not as very good evidence.
e can build on these observations to see what is plausible about l. Let E represent the
that the meteorologist says that it will rain. LetH represent the claim that it will rain.
we have seen is that comparing PrðE ∣H Þ to Pr ðE ∣ :H Þ tells about how much con-
tion the meteorologist says that it will rain provides for the claim that it will rain. In
ular, it looked plausible to compare the ratio of Pr ðE ∣H Þ to Pr ðE ∣ :H Þ to deter-
how much confirmation is provided.
f course, l also places a log in front of this ratio. The purpose of this is twofold. First, it
ature of a log that log ð1Þ 5 0. If we are using 0 to represent no confirmation either
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But the details of how l measures confirmation are not central to
this article. This is because I am not assuming that l is the only legitimate
measure of confirmation. I discuss other measures (including the one
that involves taking the difference) in appendix B. Themain text focuses
on just one measure to allow for a clearer and more streamlined discus-
sion. And I opt for l as our focus because it allows us to most easily state
the results about “adding up” reasons that are our main focus.21

Now that we have selected a measure of confirmation to focus on,
we can state the Bayesian analysis of how much confirmation a piece
of evidence provides. If we write lS for a version of l that is defined using
the probability function that represents S’s confidences, PrS, the idea is
the following:

What it is for E to confirm H to degree n for S is for lSðH , EÞ 5 n.

This analysis answers both challenges posed by the confirmation an-
alogue of cases of accrual.

We can sensibly represent confirmation numerically: confirmation
is understood in terms of a numerical representation of confidences via
the equation defining the confirmation measure. We can sensibly repre-
sent confidences numerically because of the Bayesian arguments. This
answers the confirmation analogue of the first challenge.

We can also answer the confirmation analogue of the second chal-
lenge. In order to state the answer, I will make use of the notion of prob-
abilistic independence. The intuitive idea of A (e.g., the coin came up
heads on the second toss) being independent of B (e.g., the coin came
up heads on the first toss) is that your confidence in A wouldn’t change
if you learned B. So more formally, A is independent of B just in case
21. Since we allow the log to take on any base (greater than 1), l defines a family of
measures. As I have said, I do not assume that it is the only legitimate measure, but I am
sympathetic to the idea that it is an especially plausible one; for discussion, see I. J. Good,
Good Thinking (Minneapolis: University of Minnesota Press, 1983); and Branden Fitelson,
“The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitiv-
ity,” Philosophy of Science 66 (1999): S362–S378.

way, then this feature of a log is useful. Recall that what the meteorologist says provides no
confirmation either way about it raining when you are equally confident that the meteorol-
ogist says that it will rain on it raining and on it not raining. When you are equally confi-
dent in this way, the relevant ratio is 1. l applies a log to this ratio. So it represents the degree
of confirmation as 0—this correctly tells us that there is no confirmation.

Second, the log keeps track of how many times larger (or smaller) the top term in the
ratio is than the bottom. For example, if we choose a log of base 2, it says that when the top
term is twice as large as the bottom, we represent the confirmation as 1. We can choose
whatever base for the log that we like (so long as it is greater than 1). Which base we choose
will change exactly what numbers we use to represent the strength of confirmation. Oth-
erwise, all the comparisons between claims about confirmation will, in a certain sense, be
the same.

https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F392738&citationId=p_n_55
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PrðA ∣ BÞ 5 PrðAÞ.22 We can also generalize this idea to say thatA is inde-
pendent of B conditional on C just in case Pr ðA ∣ B ∧ CÞ 5 Pr ðA ∣ CÞ.

The challenge is answered, then, by the following result: Suppose E
is independent of E 0 conditional on H and on :H. Then, the strength of
confirmation E ∧ E 0 provides for H is the sum of the strength of confir-
mation E provides forH and E 0 provides forH. In symbols, if the relevant
independence conditions hold,

lðH , E ∧ E 0Þ 5 lðH , EÞ 1 lðH , E 0Þ:
I leave the proof of this to appendix B (see Claim 1 and the discussion
that follows).

Indeed, there is a generalization of it (see Claim 1 in appendix B)
that applies even in cases where the relevant independence conditions
do not hold. We do not need to get bogged down by the exact details of
the generalization. But what this illustrates is that l provides a numer-
ical representation and model of cases in which confirmation “adds
up,” doesn’t “add up” at all, and anything in between. As I alluded to be-
fore, similar results hold for several other measures of confirmation (ap-
pendix B).

Of course, there ismuchmore that could be said about the resources
of Bayesian theories of evidence to analyze different cases. And there are
certain potential problems that have been raised for these theories (e.g.,
old evidence, logical learning, new theories). A full investigation of this
subject matter is worthy of (and has been given)monograph-length treat-
ment. But hopefully I have conveyed, at least in outline, why Bayesian con-
firmation theory is relevant to our topic: that theory is a model of how two
pieces of evidence for a given hypothesis can interact that answers the con-
firmation analogue of both of our challenges. The question now is how
this idea can be adapted to tell us about reasons.

B. A Bayesian Reduction of Reasons for Belief to Confidences

It is not hard to see how we might adapt the theory to give an analysis of
reasons for belief. Suppose PrS is a representation of S’s confidences;
then, we can say the following:

• What it is for P to be a reason for S to believe Q is for
PrSðQ ∣ PÞ > PrSðQ Þ.

• What it is for P to be a reason for S to believe Q of strength n is
for lSðQ , P Þ 5 n.
22. As is illustrated here, Bayesians often take your confidence in A conditional on B
to represent a commitment about how you will change your confidence in A on learning
(all and only) B (for certain).
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Call this the Bayesian Simple Theory of Reasons. It analyzes reasons for belief
in terms of the structure of an agent’s rational confidences.23

This theory provides a sensible basis for numerically representing the
strength of reasons by reducing this to a numerical representation of con-
fidences that is known to be sensible (due to the Bayesian arguments).
This answers the first challenge posed by cases of accrual.

Turning now to the second challenge, return to the example of John
and Bill who are rarely found together. There we said that John is going
to the party is a reason to believe exactly one of John or Bill will be at
the party and that Bill is going to the party is a reason to believe exactly
one of John or Bill will be at the party. But together these two do not pro-
vide a reason to believe that exactly one of John or Bill will be at the party.
The approach we have been considering suggests that cases like this arise
only when the relevant independence condition that we mentioned does
not hold.

That independence condition is that the two pieces of evidence, E
and E 0, are independent conditional on H and conditional on :H. And
recall, in symbols the idea that E 0 is independent of E conditional on H
can be written as PrðE 0 ∣ E ∧ H Þ 5 PrðE 0 ∣H Þ. But in the example of
John and Bill this independence condition does not hold. To see this, be-
gin by noting that

0 5 PrSðBill  goes to the party ∣
John goes to the party ∧ Exactly one of  John and  Bill  go to the  partyÞ

;
;

23. This analysis is not uncontroversial. First, it does not require reasons to be truths
or known. But arguably, reasons have these features. We can deal with this complication by
adding this as an additional condition of the analysis (see, however, n. 42 below for how this
issue arises for nonreductive approaches). Second, there is a general difficulty involving if
and when to invoke background bodies of information in applying the Bayesian analysis of
confirmation that also will arise for reasons. Third, as an editor at Ethics pointed out to me,
Richard Foley, “Evidence and Reasons for Belief,” Analysis 51 (1991): 98–102, gives a puta-
tive counterexample where if one believes what the evidence supports, this changes what
the evidence is. Fourth, John Hawthorne has also suggested several counterexamples. The
one that concerns me the most is a case where E is the proposition that H has objective
chance, e.g., .4, but nonetheless E raises the probability of H because H’s prior probability
is lower than .4. Though I cannot discuss the third and fourth issues in the depth they de-
serve here, I believe that it is not devastating to bite the bullet in either case. Regarding the
third issue, some comfort can be provided by ideas philosophers have developed in re-
sponse to the wrong kind of reasons problems. Regarding the fourth issue, some comfort
is provided by looking at a different feature of the force of reasons. In particular, the fea-
ture of a collection of reasons that concerns whether what is currently most supported by
one’s reasons is liable to change (a feature sometimes called “resilience” or “weight” in the
literature on confirmation; see James Joyce, “How Probabilities Reflect Evidence,” Philo-
sophical Perspectives 19 [2005]: 153–78, secs. 3–5, for an introduction). In any case, our fo-
cus is on clarifying the attractive features of probabilistic approaches rather than answering
these objections.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fanalys%2F51.2.98&citationId=p_n_58
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1520-8583.2005.00058.x&citationId=p_n_59
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1520-8583.2005.00058.x&citationId=p_n_59
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but on the other hand

0 < PrSðBill  goes to the party ∣
Exactly one of  John and  Bill  go to the  partyÞ

:

Thus, our approach (correctly) does not tell us to expect that the strength
of the accrual in this case is the sumof the strengths of the individual reasons.

What’smore, depending on thedetails of howwe spell the case out, it
may be that the example concerning the color of the feathers of a certain
bird satisfies the independence condition. Therefore, we can explain why
the accrual is stronger than the individual reasons in this case.

The main problem for the Bayesian Simple Theory of Reasons is that it
is not clear how to generalize it so that we can have an account of reasons
for action.

IV. SOME REDUCTIVE THEORIES

We can do better by adopting certain kinds of reductive theories. First,
I illustrate this by discussing the reductive theory of Stephen Kearns and
Daniel Star, as it is easy to see how their theory fits with a probabilistic ap-
proach.24 I then isolate the features of their theory thatmake it such a good
fit and describe alternative theories that are also good fits with the proba-
bilistic model. As it turns out, many theories can be regimented so that
they have a probabilistic structure.

A. Kearns and Star’s Reduction of Reasons to Evidence

Kearns and Star claim that reasons for action, belief, and other attitudes
can be understood in terms of evidence. In particular, they believe that a
reason for action is evidence that the act ought to be done, a reason for be-
lief is evidence that the agent ought to have the belief, and a reason for any
other attitude is just evidence that the agent ought to have that attitude.

Kearns and Star’s view need not be committed to the Bayesian pic-
ture of confirmation, but they do believe that one of the best features
of their theory is that it provides an account of the weight of reasons in
terms of the weight of evidence.25

:

24. Stephen Kearns and Daniel Star, “Reasons as Evidence,” in Oxford Studies in Meta-
ethics, ed. Russ Schafer-Landau (Oxford: Oxford University Press, 2009), 4:215–42.

25. Kearns and Starhave writtenmany other articles that touch on our topic in addition
to ibid.; see, e.g., Stephen Kearns and Daniel Star, “Reasons: Explanation or Evidence?,”
Ethics 119 (2008): 31–56; Stephen Kearns and Daniel Star, “Weighing Reasons,” Journal of
Moral Philosophy 10 (2013): 70–86. Stephen Kearns, “Bearing the Weight of Reasons,” in
Weighing Reason, ed. Errol Lord and Barry Maguire (New York: Oxford University Press,
2016), 157–72 (especially secs. 2.2.1 and 3.2.5), explicitly discusses our topic and advocates
the basic idea of the view here (even if not all of the details).

https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F592587&citationId=p_n_62
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1163%2F174552412X628878&citationId=p_n_63
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1163%2F174552412X628878&citationId=p_n_63
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Facprof%3Aoso%2F9780199315192.003.0009&citationId=p_n_64
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So let the Bayesian Kearns and Star Theory of Reasons be the theory that
a proposition is a reason for an agent to do an act or form a belief exactly if
that proposition is evidence that the agent ought to do the act or form the
belief where evidence is to be understood in terms of Bayesian confirma-
tion (i.e., in terms of the structure of a fully rational agent’s confidences).
This allows us to straightforwardly apply our work from Section III to give
an account of reasons for belief and action. If P is a reason for S to f andQ
is a reason forS tof (wherefmay be an act or an attitude), the Kearns and
Star picture claims that P is evidence that S ought to f and Q is evidence
that S ought to f. The Bayesian picture tells us that if PrSðQ ∣ P ∧
S ought  to fÞ 5 PrSðQ ∣S ought  to fÞ and PrSðQ ∣P ∧ :S ought  to fÞ 5
PrSðQ ∣ :S ought  to fÞ, then the strength of the accrual is the sum of the
strengths of each individual reason (the picture also tells us what the
strengths of the individual reasons are).

Thus, by combining Kearns and Star’s view and the Bayesian theory
of confirmation, we get a reduction of reasons that has a probabilistic
structure. This answers the twin challenges posed by cases of accrual.26

One limitation of this approach is that it is not obvious whether
Kearns and Star’s theory itself is compatible with the idea that what we
ought to do is explained by reasons—Kearns and Star appear to explain
facts about reasons in terms of prior facts about what we ought to do
and evidence. Thus, it may not fully vindicate the explanatory ambitions
of the idea that reasons explain what we ought to do.27

B. The Structure of the Reduction and Other Reductive Theories

Luckily, even if Kearns and Star’s approach does not get us everything that
we might want, it teaches us how to find other theories that might get us
what we want.28 The Bayesian Simple Theory of Reasons and the Bayesian Kearns
and Star Theory of Reasons teach us that there are two important questions
to consider in order to develop a probabilistic analysis of reasons:

Q1: What does a probability function represent?29
26. Of course, Kearns and Star’s view has also been subject to serious critical scru-
tiny. See, e.g., John Brunero, “Reasons and Evidence One Ought,” Ethics 119 (2009): 538–
45; John Brunero, “Reasons, Evidence, and Explanations,” in Oxford Handbook of Reasons and
Normativity, ed.Daniel Star (Oxford:OxfordUniversity Press, 2018), 321–41, sec. 14.214.4; John
Hawthorne and Ofra Magidor, “Reflections on the Ideology of Reasons,” in The Oxford Hand-
book of Reasons and Normativity, ed. Daniel Star (Oxford: Oxford University Press, 2018), 113–
39, sec. 5.4; Eva Schmidt, “New Trouble for ‘Reasons as Evidence’: Means That Don’t Justify
Ends,” Ethics 127 (2017): 708–18. I do not discuss these important objections here but in-
stead focus on developing the attractive feature of probabilistic approaches.

27. The account would be adequate for those who are merely seeking a theory of the
systematic interaction among reasons in these cases.

28. I thank Derek Baker for the kernel of this idea.
29. Of course, this question must be understood relative to our purpose of under-

standing of reasons (similarly for evaluating answers to this question).

https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F597594&citationId=p_n_66
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F690013&citationId=p_n_69
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Q2 : What “class of hypotheses” determines what our reasons are,
and how do these hypotheses determine our reasons?30

The Bayesian Simple Theory of Reasons and the Bayesian Kearns and Star The-
ory of Reasons agree on their answer to Q1: probabilities are representa-
tions of the confidences of fully rational agents. This is what makes them
both Bayesian.

The theories differ, however, on their response toQ2. To get the feel
of what I have in mind by the “class of hypotheses,” consider what each
theory would make of, for example, the fact that

PrðIt will  rain tomorrow ∣

The  weather  report  indicates that  it rain will  rain tomorrowÞ:
> PrðIt will  rain tomorrowÞ:

According to the Bayesian Simple Theory of Reasons, this fact tells us that
the weather report is a reason to believe that it will rain tomorrow. Ac-
cording to the Bayesian Kearns and Star Theory of Reasons, this fact does
not immediately tell us anything about our reasons. Instead, according
to this theory, we must consider

PrðYou ought to believe  it will  rain tomorrow ∣

The weather  report indicates that it will  rain tomorrowÞ
> PrðYou ought  to believe it will  rain tomorrowÞ

in order to determine what your reasons are.
Q2, then, is about which claims of the form Pr ð� ∣ EÞ > Prð�Þ deter-

mine what our reasons are. The Bayesian Simple Theory of Reasons takes any
substitution for • to determine what our reasons are. And it takes these
values to be the contents of beliefs that E gives us a reason to have.31

On the other hand, the Bayesian Kearns and Star Theory of Reasons says
that our reasons are determined only by substitutions that express claims
about what we ought to do. And it takes the attitude or act that is “sup-
ported” by this ‘ought’-claim to be what E gives us a reason to have.32 Thus,
the two theories answer Q2 differently.
30. Thanks to a referee for helping me to see that the second conjunct is also relevant.
31. For example, suppose the conditional probability that it will rain tomorrow con-

ditional on the weather report indicating that it will rain tomorrow is greater than the un-
conditional probability that it will rain tomorrow. This tells us that there is a reason to be-
lieve that it will rain tomorrow.

32. First, I use the language of an act or attitude “supported”by an ‘ought’-claim (rather
than amore precise term such as prejacent) as a fudge word to gloss over certain complexities
related to the logical form of ‘ought’. Second, we can illustrate the idea in themain text with
an example. Suppose the conditional probability that you ought to believe that it will rain
tomorrow conditional on the weather report indicating that it will rain tomorrow is greater
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Seeing this gives us twoways of generalizing our picture.Oneway is to
answerQ1differently. That is, we can give upon theBayesianism shared by
both of these theories. Another way is to answerQ2 differently. So we have
a two-dimensional array of options for generalizing.

It is easy to see what some alternative answers toQ2might be.Wemay
consider hypotheses involving normative notions other than ‘ought’. For
example, someone who is attracted to value-based views in normative the-
ory might answer Q2 by claiming that only hypotheses about what is good
or best are relevant for determining our reasons. Other views immediately
come to mind as well: views that restrict the class of hypotheses to hypoth-
eses about what is rational, what is fitting, and so on. We may also consider
answers to Q2 that restrict attention to hypotheses concerning nonnorma-
tive notions such as what satisfies desire, what causes pleasure, and so on.

Each of these suggestions corresponds to a major tradition in moral
philosophy, and therefore there are epicycles to consider. For instance, there
are a variety of desire-based or Humean views: some concern first-order de-
sires, others higher-order desires; some concern actual desires, others hypo-
thetical desires (either nonnormatively or normatively characterized). Each
of these views can be thought of as determining an answer to Q2.33

So this structure is able to accommodate many different views. This
suggests that probabilistic reductions are ecumenical in a certain theoret-
ically desirable sense. That said, this reduction is not trivial. It places con-
straints on how each of these viewsmust be developed by committing them
to a certain account of the strength of reasons. We have seen how this ac-
count is desirable for the purpose of giving a plausible theory of cases of ac-
crual. But theremay be other kinds of cases for which it creates problems.

For example, in order to get plausible results in a certain case, Mark
Schroeder (aHumean) is committed to rejecting the idea that the strength
of a reason provided by a desire is determined by how strong that desire
is.34 This commitment may not be compatible with implementing his view
in the present probabilistic setting. Determining whether it is is beyond
the scope of this article, but the answer is relevant to assessing the merits
of the Humean view. Conversely, if the Humean theory is otherwise suffi-
ciently powerful but is implausible when probabilistically regimented, this
would cast doubt on the reduction proposed here.
33. More broadly still, the theory, e.g., that the “class of hypotheses” concerns our
first-order desires can be developed in two different ways according to how these hypoth-
eses determine our reasons. Suppose, e.g., that the conditional probability that you desire
to go to the store conditional on there being a sale at the store is greater than the uncon-
ditional probability that you desire to go to the store. One way of developing the theory
claims that this fact makes it the case that there is a reason for you to go to the store. An-
other says that it makes it the case that there is a reason for you to desire to go to the store.

34. Schroeder, Slaves of the Passions.

than the unconditional probability that you ought to believe that it will rain tomorrow. This
tells us that there is a reason to believe that it will rain tomorrow.
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Let us turn now to Q1, the question of what a probability function
represents. I have been adopting the Bayesian answer that probabilities
are numerical representations of the confidences of fully rational agents.
This idea itself is underspecified. For instance, it does not tell us whether
full rationality requiresmerely satisfying the basic axioms or whether it re-
quires further properties as well (e.g., perhaps rational confidences must
validate an appropriately formulated principle of indifference).

What’s more, the idea that probabilities are numerical representations
of confidences is often used as a label for a number of distinct ideas; indeed,
this is how I have used it so far. Most famously, some believe that probabil-
ities are one of a pair of numerical representations (the other representa-
tion being a utility function) of a rational agent’s preferences (see n. 19).

This view is distinct from the view that probabilities are numerical
representations of an agent’s confidences where confidences are under-
stood to be a substantive epistemic state.35 And it is distinct from other
closely related views on which probabilities are numerical representations
of evidential support or representations of plausibility relations.36

There are still other answers to Q1 that are more distant from these.
There are views which claim that probabilities are numerical representa-
tions of certain logical or semantic features of propositions. There are views
which claim that probabilities are numerical representations of frequen-
cies or propensities. And there are views which claim that probabilities
are numerical representations of the notion of chance given by our best
theories. All of these answers to Q1 are historically prominent proposals
about how to interpret probabilities.37 Many of them are supported by
arguments for their claim that probabilities are sensible numerical repre-
sentations of whatever quantity or ordering the view focuses on.38

There are additionally various applications of probabilities. For exam-
ple, probabilities have been used to study the notion of promotion as part
35. See once again n. 19. See also Christopher Meachem and Jonathan Weisberg,
“Representations Theorems and the Foundations of Decision Theory,” Australasian Journal
of Philosophy 89 (2011): 641–63, for an important discussion related to these points.

36. See Timothy Williamson,Knowledge and Its Limits (Oxford: Oxford University Press,
2000), chap. 10, for an important discussion of the “evidential” interpretation of probability.
Discussion concerning the use of probabilities to represent plausibility centers aroundCox’s
theorem (R. T. Cox, “Probability, Frequency, and Reasonable Expectation,” American Journal
of Physics 14 [1946]: 1–13); see E. T. Jaynes, Probability Theory: The Logic of Science, ed. G. Larry
Bretthorst (Cambridge: Cambridge University Press, 2003), for an important early discus-
sion; and Mark Colyvan, “The Philosophical Significance of Cox’s Theorem,” International
Journal of Approximate Reasoning 37 (2004): 71–85, for an important more recent discussion.

37. Some of these interpretations may overlap with interpretation in the previous par-
agraph (e.g., the frequency interpretation has connections to Cox’s theorem).

38. For a survey, see Alan Hájek, “Interpretations of Probability,” in Stanford Encyclo-
pedia of Philosophy, ed. Edward Zalta (Stanford, CA: Stanford University, 2012), https://
plato.stanford.edu/archives/win2012/entries/probability-interpret/.

https://plato.stanford.edu/archives/win2012/entries/probability-interpret/
https://plato.stanford.edu/archives/win2012/entries/probability-interpret/
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1080%2F00048402.2010.510529&citationId=p_n_81
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1080%2F00048402.2010.510529&citationId=p_n_81
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1119%2F1.1990764&citationId=p_n_84
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1119%2F1.1990764&citationId=p_n_84
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FCBO9780511790423&citationId=p_n_85
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.ijar.2003.11.001&citationId=p_n_86
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.ijar.2003.11.001&citationId=p_n_86
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of an analysis of reasons in terms of promoting ends or values. That said, this
literature has a somewhat complex relationship with the ideas in this arti-
cle.39 Probabilities have also been used to study the notion of causation.40
39. Early discussions of this proposal include Stephen Finlay, “The Reasons That Mat-
ter,” Australasian Journal of Philosophy 84 (2006): 1–20; and Schroeder, Slaves of the Passions.
More recent discussions include D. Justin Coates, “An Actual-Sequence Theory of Promo-
tion,” Journal of Ethics and Social Philosophy 7 (2013): 1–8; Justin Snedegar, “Contrastive Rea-
sons and Promotion,” Ethics 125 (2014): 39–63; Nathaniel Sharadin, “Problems for Pure
Probabilism about Promotion (and a Disjunctive Alternative),” Philosophical Studies 172
(2015): 1371–86; Jeff Behrends and Joshua DiPaolo, “Probabilistic Promotion Revisited,”
Philosophical Studies 173 (2016): 1735–54; and Eden Lin, “Simple Probabilistic Promotion,”
Philosophy and Phenomenological Research 96 (2018): 360–79.

This literature focuses on analyses according to which, roughly, what it is for P to be a
reason to do X is for P to explain why doing X probabilistically promotes some end (and the
discussion is primarily about how to understand this probabilistic promotion). By contrast,
the approach developed here does not make use of the idea of a reason explaining a prob-
ability fact. Instead, it concerns when the reason raises the probability of some claim (e.g.,
doing X is good).

There are ways of bringing these approaches closer together. The main explicit pro-
posal that I am aware of is floated by (but not strictly endorsed by) Daan Evers; see Daan
Evers, “Weight for Stephen Finlay,” Philosophical Studies 163 (2013): 737–49, sec. 4. This ap-
proach suggests providing a reason involves (among other things) the action together
with background information raising the probability of an end. Evers suggests including
the reason in the background information. Nonetheless, this approach does not quite
fit the mold of this article: First, it requires supplementation with a notion of utility that
we are not making use of here (though we do discuss this later in Sec. V.B). Second, it ap-
pears to rely on a Bayesian interpretation of the probability function rather that interpret-
ing probability raising directly in terms of promotion as suggested in the text.

But it is, in any case, worthwhile to consider probabilistic promotion approaches even
if they don’t fit the mold of our discussion here. What needs to be shown is that they can
make use of the confirmation-theoretic tools described above to give an account of accrual.
The difference between these approaches and the present approach makes it unclear
whether and how they can.

Another related literature concerns the conditions under which reasons for ends
transmit to reasons for means. Matt Bedke, “Ends to Means,” Journal of Ethics and Social Phi-
losophy 12 (2013): 534–58; Niko Kolodny, “Instrumental Reasons,” in The Oxford Handbook of
Reasons and Normativity, ed. Daniel Star (Oxford: Oxford University Press, 2018), 731–63;
and Jacob Stegenga, “Probabilizing the End,” Philosophical Studies 165 (2013): 95–112, ap-
proach this question within a probabilistic framework. These approaches, too, do not easily
fit with our discussion for many of the same reasons.

An important additional difference is that these approaches are primarily concerned
with when a particular reason gives rise to another reason and the strength of that reason.
There is no immediate account of how reasons combine. Bedke, “Ends to Means,” notes
in his appendix that complications arise once we take into account how multiple reasons
combine. That said, despite these differences, the approach in Stegenga, “Probabilizing
the End,” is especially closely related in spirit to the approach discussed in this article
(due tohis use of tools fromconfirmation theory andprobabilistic approaches to causation).

Thanks to the associate editor at Ethics for pushing me to provide greater guidance
about the relationship between the ideas in this article and these two important topics.

40. Probabilistic theories of causation come in two rough types: simple probability
raising approaches, and causal modeling approaches. Important work in the first tradition
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Some of these applications are committed to reducing probabilities
to rational confidences of agents. But others are noncommittal and per-
haps suggest that probabilities may be directly used to numerically repre-
sent promotion or causation. Similar remarks may apply to other notions
such as strength of explanation or strength of motivation. This last class of
examples (promotion, causation,motivation, andexplanation) corresponds
to familiar ideas in ethics. For example, consequentialism is concerned with
promoting values.

Once again, we see that a variety of different views are compatible
with the probabilistic reduction of reasons. But, as before, we should not
overstate this point. Choices about which way to answer Q1 are not trivial.
First, it is not trivial to show that a certain mathematical function is a nu-
merical representation of some important thing in the world. We have
strong (albeit not indubitable) arguments that probabilities can numeri-
cally represent certain things (e.g., preferences or frequencies). But for
some of the proposals above we do not yet have such rigorous arguments.
So these arguments must be developed in order to show that the proposal
fully answers the first challenge posed by cases of accrual.

Second, it may be that a probabilistically regimented theory has con-
sequences for what reasons there are that cast doubt on a given reductive
theory. Or conversely, if most plausible reductive theories have implausi-
ble commitments when regimented probabilistically, this may cast doubt
on the reduction.

All of these issues require more detailed study than can be provided
here. But if these theories can make peace with a probabilistic reduction
of reasons, they will have a powerful account of cases of accrual. Since cases
of accrual are mundane, they, in my view, are part of the core set of cases
any adequate theory must account for. An important next step for one
who accepts some particular theory of reasons, then, is to consider in
detail whether their preferred view is plausible when probabilistically
regimented.
includes Patrick Suppes, A Probabilistic Theory of Causality (Amsterdam: North-Holland,
1970); Nancy Cartwright, “Causal Laws and Effective Strategies,” Noûs 13 (1979): 419–37;
and Brian Skyrms, Causal Necessity, 7th ed. (New Haven, CT: Yale University Press, 1980).
Important work in the second tradition includes Peter Spirtes, Clark Glymour, and Richard
Scheines, Causation, Prediction and Search, 2nd ed. (Cambridge, MA: MIT Press, 2000); and
Judea Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. (Cambridge: Cambridge Uni-
versity Press, 2009). For a contemporary survey, see Christopher Hitchcock, “Probabilistic
Causation,” in Stanford Encyclopedia of Philosophy, ed. Edward Zalta (Stanford, CA: Stanford
University, 2018), https://plato.stanford.edu/archives/fall2018/entries/causation-proba
bilistic; and Christopher Hitchcock, “Causal Models,” in Stanford Encyclopedia of Philosophy,
ed. Edward Zalta (Stanford, CA: Stanford University, 2019), https://plato.stanford.edu
/archives/sum2019/entries/causal-models/.

https://plato.stanford.edu/archives/fall2018/entries/causation-probabilistic
https://plato.stanford.edu/archives/fall2018/entries/causation-probabilistic
https://plato.stanford.edu/archives/sum2019/entries/causal-models/
https://plato.stanford.edu/archives/sum2019/entries/causal-models/
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V. SOME NONREDUCTIVE THEORIES

So far we have considered restrictions on the class of hypotheses (answers
to Q2) and interpretations of probabilities (answers to Q1). All of the ideas
that we have looked at are reductive in some way: each analyzes what a rea-
son is in terms of some non-reasons-based interpretation of a what a prob-
ability is (e.g., an interpretation in terms of rational confidences). Some
are, in addition, reductive because they rely on a prior notion of value,
desire-satisfaction, or the like.

Is it possible to use these probabilistic tools without reducing reasons
to confidences or anything else from the list of options for interpreting
probabilities that we have discussed?41 In this section, we explore (and
show) how this is possible for both reasons for belief and reasons for action.
We begin with reasons for belief.
A. Probabilities for Nonreductive Theories of Reasons for Belief

It helps to build up to things slowly. Recall the Bayesian Simple Theory of
Reasons. Where PrS is a representation of a rational agent S’s confidence,
it claims the following:

• What it is for P to be a reason for S to believe Q is for
PrSðQ ∣ PÞ > PrSðQ Þ.

• What it is for P to be a reason for S to believe Q of strength n is
for lSðQ , P Þ 5 n.

This view analyzes reasons for belief in terms of rational confidences.
That said, if we no longer commit to this theory’s claim about what

probabilities represent, the following related theses are something a non-
reductivist might hope to accept:

• P is a reason for S to believe Q if and only if (hereafter iff)
PrSðQ ∣ PÞ > PrSðQ Þ.

• P is a reason for S to believe Q of strength n iff lSðQ , PÞ 5 n.

Of course, the meaning of these claims is now unclear because we are
no longer entitled to the Bayesian understanding of the probability terms
on the right-hand side of them.
41. I thank a referee and Jamie Dreier at Ethics for not being satisfied with the original
approach that I took to this question and pushing me to do better. Various other people
also suggested that I needed to improve on my original approach. Of those, I recall Rich-
ard Bradley, Ángel Pinillos, and Michael Titelbaum.
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We can make some progress toward clarifying the meaning of these
claims in a nonreductivist friendly way if we take the left-hand side to give
us an understanding of the probability terms on the right-hand side:

• What it is for PrSðQ ∣ PÞ > PrSðQ Þ is for P to be a reason for S
to believe Q.

• What it is for lSðQ , PÞ 5 n is for P to be a reason for S to believe Q
of strength n.

And, indeed, this is the basic idea that I wish to propose on behalf of
nonreductivists—nonreductivists are entitled to the full suite of probabi-
listic tools because probabilities can be analyzed in terms of reasons.42 Of
course, wemust say muchmore in order to show that this proposal works.
The remainder of Section V.A is dedicated to this task. That said, some
readers may prefer to take my word for it that the proposal can be made
to work. These readers are welcome to skip to the last two paragraphs be-
fore Section V.B for a summary of what this account says about the two
challenges posed by cases of accrual.43
42. One complication is that this nonreductive approach is actually best thought of as
a direct analysis of something like what T. M. Scanlon calls relation R (Thomas Scanlon,
Being Realistic about Reasons [Oxford: Oxford University Press, 2014]; cf. what Horty, Reasons
as Defaults [esp. 16–17 and 42–43], calls generalizations or defeasible principles). This is a
nonreductive relation between propositions that is supposed to be exactly like the reason-
relation except that the thing that is the reason can fail to be true. I follow Scanlon in tak-
ing this to be an instance of the nonreductive approach to reasons (and an analysis of what
are typically called reasons can be had by adding that the thing that is the reason is true).
But this issue deserves further investigation; see ShyamNair, “Deontic Logic and Ethics,” in
Handbook of Deontic Logic and Normative Systems, ed. Dov Gabbay et al. (Milton Keyne: Col-
lege Publications, 2021), vol. 2, ch. 8, sec. 3.3.

43. A different idea (suggested to me by Jiji Zhang) may be to take the strength of
reasons to determine conditional probabilities directly. For example, the approach might
claim that what it is for PrSðQ ∣ PÞ > t is for P to be a reason for S to believe Q where t is
some (perhaps contextually determined) threshold. The trouble with this idea is that a rea-
son for belief requires that P raise the probability of Q relative to its prior probability rather
than simply make the probability of Q higher than some threshold. The difference be-
tween this threshold account and an account that requires probability raising has been fa-
miliar at least since Carnap (see esp. Rudolf Carnap, preface to Logical Foundations of Prob-
ability, 2nd ed. [Chicago: University of Chicago Press, 1962]) distinguished between the
“firmness” notion of confirmation (the threshold account) and the “increased firmness”
notion of confirmation (the probability raising account).

We can illustrate the importance of this point in different ways. Here is one: Suppose P
and Q are probabilistically independent. Plausibly in a case like this P does not provide a
reason to believe Q. But notice that, so long as t is less than 1, there can always be cases
where PrSðQ ∣ P Þ 5 PrSðQ Þ > t.

See Michael Titelbaum, Fundamentals of Bayesian Epistemology (Oxford: Oxford Univer-
sity Press, forthcoming), chap. 6 (esp. sec. 2), for a discussion of the contemporary state of
play on this issue and for similar arguments.
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How the proposal needs to be developed.—To start, the nonreductivist is
entitled to take for granted various qualitative claims such as P is (or is
not) a reason for S to believe Q. Given this, they will be able to determine
the truth of inequalities of the form PrSðQ ∣ PÞ > PrSðQ Þ. But there are
many other claims about probabilities that they do not yet have an analysis
of. And these other claims about probabilities play a role in an account
of exactly how strong reasons are and in stating the independence condi-
tions under which reasons “add up.”

Suppose, then, that the nonreductivist also helps themselves to quan-
titative claims like P is a reason for S to believe Q of strength n. This is a
strong substantive assumption. Indeed, the first challenge posed by cases
of accrual was to provide a justification for a numerical representation
of strengths of reasons. The assumption that we are considering simply
posits that somehow the nonreductivist has provided such a justification.
Nonetheless, let us simply grant this for now.

Even still, important questions remain. First, not all numerical repre-
sentations will work. The nonreductivist needs a numerical representa-
tion thatmatches lS. This is not trivial because lS is a function with specific
properties, the properties of a log of a ratio of two conditional probabili-
ties. Moreover, it is not open to the nonreductivist to overcome this diffi-
culty by stipulating that the numerical representation of the strength of
reasons is lS as it is typically defined. lS is typically defined in terms of prob-
abilities. The nonreductivist, by contrast, wishes to define probabilities in
terms of reasons. So they require a scheme for numerically representing
the strengths of reasons that matches lS but is defined without mention-
ing probabilities.

Second, even if we have such a numerical representation, we are not
yet entitled to say that we have an analysis of probabilities. This is because
it is not obvious that the values of lS suffice to determine a probability
function. If they are not sufficient, then even if we have a representation
of the strength of reasons that matches lS, we would still not have an anal-
ysis of the probability function in terms of reasons.

As far as I know, these issues have not been discussed by confirmation
theorists.44 This is not especially surprising because confirmation theorists
typically take the notion of probability to be more basic than the notion
of confirmation. But in the context of developing a nonreductive account
of reasons for belief, this is not an option. So we must face up to these
questions.

Thankfully, both of these questions can be answered: We can axio-
matically define a reasons-weighing function without mentioning probability
44. Thanks to Kenny Easwaran, Branden Fitelson, and Michael Titelbaum for helping
me with the research that has made me more confident (though still not certain) that this
question had not been answered in the literature.
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and prove that this reasons-weighing function matches lS. We can also
use the reasons-weighing function to define another function and prove
that this function is a probability function—indeed, it is the very prob-
ability function involved in the lS that matches our reasons-weighing
function.

The full development of these ideas is somewhat technical, and, as
of this time, the proofs that I have are not compact. So I confine them to
appendix A. But what I wish to do next is sketch at least the basic ap-
proach. As mentioned earlier, readers who would prefer to take my word
for it may skip to the last two paragraphs before Section V.B.

Sketch of the proposal.—The approach is this: the Bayesian Simple Theory
of Reasons entails various claims about the relations among the strengths
of reasons. Instead of taking these claims to be a consequence of accept-
ing this reductive theory, the nonreductivist will take these claims to be
axioms in a nonreductive theory of reasons. Since the reductivist is com-
mitted to these claims, they cannot directly object to the nonreductivist’s
axioms.45

More exactly, we will show that any reductivist who accepts the Log
likelihood measure of confirmation, l, in a form that claims that l(Q , P)
tells us how strong of a reason P is to believe Q will be committed to ac-
cepting the claims that we take as axioms below. Of course, some reduc-
tivists might reject this particular measure of confirmation. Though I be-
lieve that similar results can be established for alternative measures, we
do not have the space here to discuss this issue.46 So although I will speak
more loosely at times below, the key idea of the approach is that the non-
reductivist takes as axioms claims that are endorsed by this particular
group of reductivists.

Of course, the trick is to identify a set of axioms that suffice to get
the nonreductivist what they want. Let’s look at how wemight do this. We
begin by simplifying things a bit. Let us keep reference to the agent whose
reasons we are discussing implicit. So we now write Pr and l instead of
PrS and lS. And let us assume that we are only considering probability
functions that are regular in the sense that if P is not a contradiction, then
45. Of course, they might still object indirectly on the grounds of simplicity, elegance,
etc., or, as I point out later, on the grounds that there is no qualitative structure that has
been shown to provide a basis for this numerical representation. This, as I emphasize later,
is an important unresolved challenge for the nonreductivist.

46. More exactly, I believe, based on some work in progress, that similar results can be
established for the measures that exhibit the kind of conditional additivity discussed in ap-
pendix B. I have not explored whether similar results can be shown for the measures that
do not exhibit this kind of conditional additivity. And of course, some reductivists answer
Q2, so it is the degree to which P confirms, e.g., the claim that you ought to believe Q that
determines the strength that reason P provides to believe Q. I do not see how to develop a
nonreductivist approach that mirrors these approaches.
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PrðP Þ ≠ 0. This is an important limitation, but we will work within this
more restricted setting in what follows.47

Next, recall how l is defined:

lðH , EÞ 5 log
PrðE ∣H Þ
PrðE ∣ :H Þ
� �

:

This definition leaves implicit the fact that a log has a certain base. But
for our current purposes, we will need to be explicit about this:

lbðH , EÞ 5 log b
PrðE ∣H Þ
PrðE ∣ :H Þ
� �

:

Accordingly, the reasons-weighing function tobedefinedwill, strictly speak-
ing, be a function that is relativized to a base.48 So we will write this function
as rb. We will discuss only three of the axioms defining rb here. But this will
be enough to give a sense of the general approach.49

The axioms that we will discuss primarily concern only certain pairs
of propositions, (H, E). Let us say that a pair (H, E) is extreme just in case E
entailsH or E entails :H. The first axiom concerns those pairs (H, E) where
E is the tautology, ⊤, and (H, E) is not extreme. In this setting, it can be
shown that

lbðH , ⊤Þ 5 log bð1Þ 5 0:

This just means that ⊤ is not a reason for believing H and not a reason
against believing H (in cases where (H, ⊤) is not extreme).

Our strategy, then, tells us that the nonreductivist should take this
claim to be an axiom about reasons rather than a consequence of a re-
ductive account:
4
this ar
“Regu

4
each

4
axiom
requi
those
No Reason: if (H, ⊤) is not extreme, rbðH , ⊤Þ 5 log bð1Þ 5 0.
The next two axioms concerns cases where (H, E) is not extreme and E
is not the tautology. We say these are cases where (H, E) is not trivial.

Indeed, we will focus on cases where (H, E) is not trivial and is such
that H entails E. It can be shown for such (H, E) that
7. This limitation is discussed in a bit more detail in Secs. A.2 and A.4. But nothing in
ticle confronts the important philosophical issues about regularity; seeKennyEaswaran,
larity and Hyperreal Credence,” Philosophical Review 123 (2014): 1–41, for discussion.
8. Note, however, that we can map measures that differ only in choice of base onto
other using the “change of base” formula (log bðaÞ 5 log dðaÞ=log d ðbÞ).
9. There are in total nine axioms that define rb. The footnotes mention some of the
s not discussed in the main text of Sec. V.A. One such axiom is Base Propriety, which
res the base to be strictly greater than one. This claim (which is implicitly assumed by
who accept lb) ensures that as the term inside the log grows, so does lb.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1215%2F00318108-2366479&citationId=p_n_97
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lbðH , EÞ > log bð1Þ 5 0:

This just means that if H entails E (and (H, E) is not trivial), then E is a
reason for believing H.

Our strategy, then, tells us that the nonreductivist should take this
claim to be an axiom about reasons rather than a consequence of a reduc-
tive account:
Entailed Reason: if (H, E) is not trivial and H entails E,

rbðH , EÞ > log bð1Þ 5 0:
Since we have said that rbðH , ⊤Þ 5 log bð1Þ 5 0, another way to think of
this idea is that it is saying that when H entails E and (H, E ) is not trivial,
E is a better reason to believe H than ⊤ is a reason to believe H.

The last axiom that we will discuss in Section V.A is more complex.
Seeing how we arrive at this more complex axiom will reveal a key idea
involved in finding the other subtler axioms described in Section A.1.

We begin by noting the following fact (Lemma 1.4.1, which I prove
in Sec. A.3.2) about cases where (H, E) is not trivial and H entails E:

lbðH , EÞ 5 log b
Prð:EÞ

PrðE ∧ :H Þ 1 1

� �
:

In the context of the previous claims, what this tells us is that the extent
to which E provides a better reason for H than ⊤ provides a reason for H
is a function of the ratio Prð:EÞ

PrðE ∧ :H Þ.
We can make use of this fact, together with basic facts about the

mathematical relations among ratios, to discover other connections among
reasons. For example, as a

b grows larger,
b
a grows smaller and vice versa. So

if we can find a reason that is related to

PrðE ∧ :H Þ
Prð:EÞ

as rb(H, E) is related to

Prð:EÞ
PrðE ∧:H Þ ,

we will have discovered an interesting connection between two reasons.
And as it turns out, rbðH , :E ∨ H Þ is such a reason (in cases where (H, E)
is not trivial and H entails E). In particular, once we recall that blog bðxÞ 5 x,
with a little work it can be shown that
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lbðH , :E ∨ H Þ 5 log b
blbðH ,EÞ

blbðH ,EÞ 2 1

� �
:

What this describes is a particular negative correlation between two rea-
sons. And, indeed, the strength of the reason E provides to believe H is
intuitively negatively correlated with the strength of the reason :E ∨H
provides to believeH. In any case, whether immediately intuitively plausi-
ble or not, this is a generalization entailed by the reductive approach.

So the strategy we are pursuing tells us to take this as an axiom:
5
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Negatively Correlated Reasons: if (H, E) is not trivial andH entails E,

rbðH , :E ∨ H Þ 5 log b
brbðH ,EÞ

brbðH ,EÞ 2 1

� �
:

Obviously, this axiom is more complicated and imposes stronger con-
straints on what a reasons-weighing function is like.50 But recall that the
nonreductivist has a standing defense of their axioms: the axioms are claims
that reductivists must accept. The reductivist and nonreductivist only differ
about whether this claim is taken to be axiomatic or to be a consequence of
a reduction.

What I do in appendix A is develop a different notation for dis-
cussing cases where (H, E) is nontrivial that lets us quickly discover fur-
ther correlations among the strengths of reasons.51 We then take the
claims that describe these correlations to be axioms.52 In addition to
these axioms, we need one straightforward axiom to cover the cases where
(H, E) is extreme. Overall, the axioms vary in complexity from very sim-
ple to even more complicated than Negatively Correlated Reasons. But
each one is, on reflection, plausible and, in any case, is a claim that the non-
reductivist’s opponent is committed to.
0. Those who read appendix A will notice that many of the axioms include the terms
d11. We saw that for (H, E) that is not trivial and is such thatH entails E, E is a reason
ieve H of strength n > rbðH , ⊤Þ 5 log bð1Þ. Conceptually then, these 11 and 21
function to isolate the extent to which a given reason is better than the reason pro-
by ⊤ for H. And the axioms work by relating the extent to which one reason is better
with the extent to which another reason is better than ⊤.

1. Accordingly, some of the axioms and claims above are given in different notation.
2. Negatively Correlated Reasons relies on the relationship between a

b and b
a. We

er a further axiom (Positively Correlated Reasons) that claims that there is a positive
ation between reasons based on the fact that a

c 5 a
b
b
c. Another axiom (Aggregative

ns) claims that there is a summation like correlation between reasons based on the
at a11a21⋯1an

b 5 a1
b 1 a2

b 1 ⋯ 1 an
b . A third axiom (Factored Reasons) claims that

is a complex correlation among reasonsbasedonmore intricate applicationof theprop-
lied on for Positively Correlated Reasons. A fourth axiom (Complimentary Reasons) re-
a property of log values and ratios together, namely, that log ðabÞ 5 2log ðbaÞ.
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Myhope is that this gives a sense of how the idea of defining a reasons-
weighing functionwithoutmentioning probabilities can work. The precise
and complete statement of all the axioms that define a reasons-weighing
function, rb, is given in Definition 1 in Section A.1. Though I will not dis-
cuss the details here, I also show there how to define (Definition 2) a func-
tion, frb , based on rb and prove that it is a probability function.53 Themain
result, then, that we prove in detail in appendix A is the following:
5
trivial
can u
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take f
Theorem 1: For any reason-weighing function, rb, (i) frb is a proba-
bility function, and (ii) for any propositions H, E either

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �

or rb(H, E) and log b

�
frb ðE ∣H Þ
frb ðE ∣ :H Þ

�
are both undefined.
This proof in turn contains the materials to show this second important
result:
Theorem 2: For any regular probability function, Pr, there is a
reasons-weighing function, rb, such that (i) for any proposition P,
PrðPÞ 5 frb ðPÞ, and (ii) for any propositions H, E, either

log b
PrðE ∣H Þ
PrðE ∣ :H Þ
� �

5 rbðH , EÞ

or log b

�
PrðE ∣H Þ
PrðE ∣:H Þ

�
and rb(H, E) are both undefined.
These results demonstrate hownonreductive theories of reasons can earn
the right to make use of probabilistic tools.

This allows the nonreductivist to answer the second challenge posed
by cases of accrual—the challenge of showing that given a numerical rep-
resentation of the strengths of reasons, this representation allows us to dis-
tinguish cases where reasons “add up” from cases where they don’t “add
up” at all and everything in between. That said, we have not fully responded
to the first challenge because we have simply assumed that the strength of
reasons can be numerically represented.While we have seen why this partic-
ular numerical representation is plausible and that reductivists cannot deny
the claims that we take as axioms, wehavenot provided a full justification for
3. The basic idea, once again, makes use of the fact that the value of brb ðH ,EÞ for non-
(H, E) such thatH entails E is 1 plus the ratio of two probabilities. It turns out that we
se brb ðH ,EÞ 2 1 to fix the ratios of the probabilities of all the maximally specific prop-
ns. Since the probability of themaximally specific propositions sums to 1, we can then

rb to be that function which respects these ratios and sums to 1.
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it. To do this, wemust provide a set of plausible qualitative axioms and show
that the reasons-weighing function is a numerical representation of these
qualitative features. While I am optimistic that the relevant qualitative axi-
oms can be discovered, this is a nontrivial task.

I conclude therefore that while nonreductive accounts of reasons
for belief answer the second challenge posed by cases of accrual, they have
yet to answer the first challenge. In this respect, Bayesian and some (but
not all) other reductive approaches to reasonshave anadvantage as of now.

B. Probabilities for Nonreductive Theories of Reasons for Action

Given our success in the case of reasons for belief, it is reasonable to hope
that an analogous approach to reasons for action will succeed. But there
is an obstacle to this approach.

Symmetry properties of reasons for action and confirmation.—To see the
obstacle, consider the following observation:
5
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The Asymmetry of Reasons for Action: F can be a reason for
action in favor of A without it being true that A is a reason for action
in favor of F.
Examples make this clear. Plausibly, the fact that I promised to help Callie
move is a reason for me to help her move. Now consider the following
question: does my helping Callie move provide a reason for action for
the claim that I promised to help her move? This question is perhaps sim-
ply incoherent and so cannot be answered. Or if it can be answered, the
answer is “no.”This is whatTheAsymmetry of Reasons for Action says.

Compare this to the following fact about confirmation:
The Symmetry of Confirmation: P confirms Q iff Q confirms P.
This result holds for every confirmation measure that we have discussed
in this article because these measures satisfy the qualitative condition that
P confirms Q iff PrðQ ∣ P Þ > PrðQ Þ.54

This tells us that the analogue of the approach that we developed
for reasons for belief will not work for reasons for action.55 The approach
for reasons for belief claimed that P being a reason to believeQ is structurally
4. To show this, it suffices to prove that if PrðQ ∣ PÞ > Pr ðQ Þ, then Pr ðP ∣Q Þ > Pr ðP Þ.
s theorem tells us that PrðQ ∣ P Þ 5 PrðP ∣Q Þ PrðQ Þ

Pr ðP Þ . Thus, we can rewrite Pr ðQ ∣ P Þ > Pr ðQ Þ
P ∣Q Þ Pr ðQ Þ
Pr ðP Þ > PrðQ Þ. We then multiply and cancel and get our desired result that
Q Þ > Pr ðP Þ.
5. Since PrðP ∣Q Þ > t does not entail PrðQ ∣ P Þ > t, it might seem that a thresh-
proach like the one in n. 43 for reasons for action will avoid this problem. Unfortu-
, a similar problem arises here owing to the asymmetry of reasons for action. For ex-
, for suitable values of P, Q, and f, the following can all be true: First, P is a reason for
. Second, Q is not a reason for S to f. Third, f-ing is not a reason supporting P or
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equivalent to P confirming Q.56 So the analogous approach for reasons for
action (claiming thatP being a reason for action supportingA is structurally
equivalent toP confirmingA) cannotworkbecauseof thedifference in sym-
metry between these two notions.57

Sher’s reduction of probabilities and utilities to reasons for action.—That
said, there is an approach developed by Itai Sher in a groundbreaking
paper that is promising for the nonreductivist.58 Sher’s account is not
purely probabilistic. Instead, it is structurally similar to decision theory
in which one has both a probability function and a utility function.
Interestingly for the nonreductivist, Sher shows that one need not take
the probability function andutility function as basic anddefine theweight
of reasons in terms of them. Instead, one can take the weight of reasons
for action to be basic and define a probability and utility function.59 In this
56. This suggests that P is a reason to believe Q iff Q is a reason to believe P. While per-
haps initially surprising, this is no more controversial than the same principle concerning
evidence.

Of course, one might worry that arguments such as those in n. 23 pull reasons for be-
lief and evidence apart in a way that will yield counterexamples to this principle for reasons
for belief. I do not believe those (putative) counterexamples yield a problem for the above
symmetry thesis. But I admit that once the connection between reasons for belief and ev-
idence is broken, matters become more complicated. Thanks to the editor at Ethics for
bringing this concern to my attention.

57. Reductive views like Bayesian Kearns and Star Theory of Reasons allow for the truth of
The Asymmetry of Reasons for Action. Suppose E is not an ‘ought’-claim but confirms
some ‘ought’-claim. Bayesian Kearns and Star Theory of Reasons says that E is a reason. This
entails that the ‘ought’-claim confirms E. But this does not, on its own, tell us that the
‘ought’-claim is a reason. Similar remarks apply about other reductive views with this struc-
ture. That said, Eva Schmidt in an insightful paper (Schmidt, “New Trouble for ‘Reasons as
Evidence’”) shows that there are special contexts where symmetry worries may recur.

58. Sher, “Comparative Value.” Thanks to Itai Sher for correspondence that helped
me to better understand this paper and its merits (though I do not discuss it in nearly
the detail it deserves here).

59. Cf. Franz Dietrich and Christian List, “A Reason-Based Theory of Rational Choice,”
Noûs 47 (2013): 104–34, who take reasons for preferences over alternatives as fundamental

supporting :P. Fourth, f-ing is not a reason supporting Q or supporting :Q. Fifth, ⊤ is
not a reason supporting P or supporting :P. Sixth, ⊤ is not a reason supporting Q or sup-
porting :Q

But the threshold approach entails that they are inconsistent. To see this, we first need
to translate these claims into the language of the threshold approach as follows: First,
PrSðS does f ∣ P Þ > t. Second, PrSðS does f ∣Q Þ ≤ t. Third, PrSðP ∣ S does fÞ 5 t.
Fourth, PrSðQ ∣ S does fÞ 5 t. Fifth, PrSðP ∣ ⊤Þ 5 t. Sixth, PrSðQ ∣ ⊤Þ 5 t.

Bayes’s theorem applied to the first claim tells us that PrS ðP ∣ S does fÞPrS ðS does fÞ
PrSðP Þ > t. On

the other hand, Bayes’s theorem applied to the second claim tells us PrSðS does f ∣Q Þ 5
PrS ðQ ∣ S does fÞPrSðS does fÞ

PrSðQ Þ ≤ t. Since the third and fourth claims tell us that PrSðP ∣
S does fÞ 5 PrSðQ ∣ S does fÞ 5 t, all the terms in these equations must have the same
value except PrS(P) andPrS(Q ). Since the value of thefirst equation is greater than the value
of the second, it follows that PrSðP Þ < PrSðQ Þ. But the fifth and sixth claims tell us that
PrSðP Þ 5 PrSðP ∣ ⊤Þ 5 t and that PrSðQ Þ 5 Pr ðQ ∣ ⊤Þ 5 t. So PrSðP Þ ≮ PrSðQ Þ,
which shows that threshold analysis incorrectly claims that the six claims are inconsistent.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1468-0068.2011.00840.x&citationId=p_n_117
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framework, one can give a precise account of accrual for reasons for ac-
tion. The model he gives and the theorem that he proves to show this are
well worth detailed study. But I omit discussion of the proof and detailed
statement of Sher’s assumptions in order to highlight some basic con-
ceptual points.

Sher’s result is similar to the results that I have presented for reasons
for belief: it assumes from the start that reasons for action can be numer-
ically represented and shows that this representation is of the right sort to
model the dynamics of reasons “adding up.” So the two nonreductive ap-
proaches answer the second challenge posed by cases of accrual. But they
both fail to answer the first challenge because they do not provide grounds
(e.g., a set of plausible qualitative axioms) that show that this numerical
representation is sensible. I am optimistic about the prospects of find-
ing qualitative axioms to ground these numerical representations. But
my optimism is not based on any concrete proposal, so this is an impor-
tant open question for nonreductivists.

I close with two points. First, our nonreductive approaches give two
distinct pictures of reasons for belief and action rather than a single uni-
fied one. I do not know whether this a serious cost. But I suspect it is not.
Second, there are some approaches to accrual that are more distant from
the probabilistic ones that have been our focus. I discuss them in a note.60
60. Let me briefly discuss some purely qualitative approaches. One approach claims
that the relationship between individual reasons and their accrual is a brute one. It is hard
to know what to say in response to someone who adopts this kind of quietism. So I simply
report my feelings: Quietism about a phenomenon may be reasonable if there is little ev-
idence that any going theory can explain it. It is much less reasonable if there is evidence
that a variety of theories can give a detailed account of the phenomenon in question. (Nair,
“How Do Reasons Accrue?,” sec. 6, makes a similar point but also follows the lead of
Prakken, “Study of Accrual of Arguments,” sec. 3, in observing that there are certain gen-
eralizations about accrual that require explanation and the brute approach fails to provide
an explanation of these generalizations.)

Next, a number of qualitative approaches in the default logic tradition (Raymond
Reiter, “A Logic for Default Reasoning,” Artificial Intelligence 13 [1980]: 82–132) and in the
argumentation theory tradition (Phan Minh Dung, “On the Acceptability of Arguments
and Its Fundamental Role in Nonmonotonic Reasoning, Logic Programming, and n-Person
Games,” Artificial Intelligence 77 [1995]: 321–57) have been developed to model accrual
( James Delgrande and Torsten Schaub, “Reasoning with Sets of Defaults in Default Logic,”
Computational Intelligence 20 [2004]: 56–88; Mauro Gómez Lucero, Carlos Chesñevar, and
Guillermo Simari, “Modelling Argument Accrual in Possibilistic Defeasible Logic Program-
ming,” in Symbolic and Quantitative Approaches to Reasoning with Uncertainty [2009], 131–43;
Mauro Gómez Lucero, Carlos Chesñevar, and Guillermo Simari, “Modelling Argument Ac-
crual with Possibilistic Uncertainty in a Logic Programming Setting,” Information Sciences
228 [2013]: 1–25; Sanjay Modgil and Trevor Bench-Capon, “Integrating Dialectical and

and derive a standard rational choice theory from it. That said, issues related to accrual are
not central to their approach, so there is only a brief preliminary discussion of the issues raised
by these cases (in their sec. 8).

https://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2F0004-3702%2894%2900041-X&citationId=p_n_120
https://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.ins.2012.11.025&citationId=p_n_123
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VI. CONCLUSION

The question that we have asked is whether and how reductive and non-
reductive theories can make use of probabilistic tools to understand the
accrual of reasons.

We saw that a variety of reductive theories (though not every reduc-
tive theory) can make use of probabilistic tools both to provide a basis for
the numerical representation of the strengths of reasons and tomodel the
different ways reasons can “add up.” But we should not overstate what has
been shown. Since probabilities have precise features, this constrains how
we can develop particular reductive theories. These constraints will make
clear what predictions the theories make. The result may be that some
AccrualModes of Argumentation,” inProceedings of the 2010Conference onComputationalModels of
Argument [2010], 335–46; Prakken, “Study of Accrual of Arguments”; Bart Verheij, “Accrual
of Arguments in Defeasible Argumentation,” in Proceedings of the Second Dutch/German Work-
shop on Nonmonotonic Reasoning [1995], 217–24; and DamianWassell, “When Are Accruals of
Reasons Stronger Than Their Elements?” [unpublished manuscript, 2014]). These qualita-
tive accounts do provide conditions under which, e.g., the accrual of the reasons provided by
themovie and the restaurant is stronger than these reasons individually. But they are unable
to tell us under what conditions the accrual is stronger than the individual reasons to an ex-
tent thatmakes it so that there ismore reason to cross the bridge than to not cross the bridge.

There are also approaches such as those inspired by (though not fully endorsed by)
Nair, “How Do Reasons Accrue?,” and Maguire and Snedegar, “Normative Metaphysics
for Accountants,” that make use of the distinction between derivative/nonderivative rea-
sons (where this distinction is understood to be influenced by work of Christine Korsgaard,
“Two Distinctions in Goodness,” Philosophical Review 92 [1983]: 169–95, on goodness) or
perhaps something akin to this distinction. And Zoë Johnson King, “We Can Have Our
Buck and Pass It, Too,” in Oxford Studies in Metaethics, ed. Russ Schafer-Landau (Oxford:
Oxford University Press, 2019), 14:167–88, discusses some related ideas as part of her so-
lutions to problems for buck-passing accounts of goodness. While there are certain aspects
of the ideas in appendix A of this article that are suggestive of such a distinction (see n. 64),
nothing in the work of advocates of these views provides enough detail about how this dis-
tinction is drawn to replicate the rich quantitative structure that probabilities and utilities
have. That said, Maguire and Snedegar, “Normative Metaphysics for Accountants,” and
Johnson King, “We CanHave Our Buck,” have slightly different targets in mind, so this crit-
icism may not be a problem for their core projects. Thanks to Barry Maguire and Justin
Snedegar for discussion of this issue. I also learned close to the publication date of this
article of a paper in progress by Davide Fassio tentatively titled “How Reasons Accrue” that
further develops some ideas in the spirit of the approaches considered in this paragraph.
Though I suspect similar worries may arise for Fassio’s approach, I cannot do justice to the
distinctive features of his approach here.

Finally, close to when this article was accepted, I learned of Ralph Wedgwood’s recent
work (Ralph Wedgwood, “The Reasons Aggregation Theorem,” in Oxford Studies in Norma-
tive Ethics, ed. Mark Timmons, vol. 12 [Oxford: Oxford University Press, forthcoming])
adapting Harsanyi’s theorem to give an account of the accrual of reasons for action. I think
this is a promising approach to explaining the accrual of reasons (it also makes use of
broadly decision-theoretic tools like Sher’s approach). But I do not believe that it helps
the nonreductivist about reasons because Wedgwood’s approach is naturally understood
as reducing reasons to values.
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reductive views are more promising than others. Conversely, if most plau-
sible reductive views look unappealing when regimented in a probabilistic
setting, this may cast doubt on the reduction advocated here.

We also saw that nonreductive views can make use of probabilistic
or decision-theoretic tools to model the variety of ways reasons can “add
up.” They do this, however, by assuming that the strength of reasons can
be numerically represented rather than by providing a basis for this nu-
merical representation. This is a remaining challenge for nonreductive
approaches. I am optimistic that with some additional work, a sensible
basis—in the form of plausible qualitative axioms about the strengths of
reasons—can be provided. But others may disagree.

Finally, like particular versions of reductive theories, it remains to
be seen exactly what predictions particular nonreductive theories make
when regimented by the constraints required to make use of probabilistic
or decision-theoretic tools. It also remains to be seen whether those pre-
dictions are plausible. Conversely, if most plausible nonreductive theories
look unappealing when regimented in a way that allows them tomake use
of probabilities, this may cast doubt on the approach advocated here.

However these matters turn out, we have seen that probabilistic
frameworks are surprisingly rich and ecumenical: they can provide a de-
tailed treatment of cases of accrual, they can accommodate a variety of
reductive theories, and they can be accommodated by a variety of non-
reductive theories.

My hope is that these frameworks will be fruitful for those interested
in confirmation theory, those interested in the systematic interaction among
reasons, and especially those interested in how reasons can explain what we
ought to do and believe.
Appendix A

Probabilities Are Reducible to Reasons

In this appendix, we prove the results in Section V.A.61We assume that propositions
are elements of an algebra based on a partitionU 5 fA1, A2, ::: , Ang, where the Ai

are the cells of the partition and n ≥ 3. So a proposition is a (possibly empty)
set of cells of the partition. We adopt some shorthand for designating particular
propositions: ⊤ 5 U , ? 5 ∅. If P, Q are propositions, we will use the follow-
ing notation when it is convenient: :P 5 ⊤ 2 P , P ∨ Q 5 P [ Q , P ∧ Q 5
P \ Q . We will frequently omit the braces around propositions that are singletons,
so we will write {Ai } as Ai. Finally, we say P entails Q exactly if P ⊆Q .

We begin by defining the reasons-weighing function.
61. Thanks to Kenny Easwaran for comments on an initial sketch of these ideas.
Thanks to both Kenny Easwaran and Branden Fitelson for encouragement and for helping
me to see what issues need to be addressed. Unfortunately, many of these issues will have
to be dealt with elsewhere.



Nair “Adding Up” Reasons 71
A.1. Definitions

It helps to start by introducing some terminology to describe certain pairs of
propositions:

• (H, E) is extreme exactly if E entails H or E entails :H.
• (H, E) is vacuous exactly if (H, E) is not extreme and E 5 ⊤.
• (H, E) is trivial exactly if (H, E) is extreme or vacuous.
• (P,Q) is a nontrivial determiner exactly if P ≠ ?, Q ≠ ?, P ∨ Q ≠ ⊤, and

P ∧ Q 5 ?.

The letters used in the first three definitions indicate that we are interested in
(H, E) as a pair where the first element is the hypothesis (the thing supported
by the reason) and the second element is the evidence (the reason). The letters
used in the fourth definition, by contrast, suggest that we are not primarily inter-
ested in (P, Q) as a pair consisting of a hypothesis and evidence. Instead, these
pairs can be used to determine other pairs of propositions that are hypotheses
and evidence which have properties that are of interest to us. The following fact
explains this more precisely:

Notational Variants: If (H, E) is not trivial and H entails E, then there is ex-
actly one (P, Q ) such that (P, Q ) is a nontrivial determiner and H 5 :P ∧ :Q
and E 5 :Q . And if (P, Q) is a nontrivial determiner, then (:P ∧ :Q , :Q) is
not trivial and :P ∧ :Q entails :Q.

Notational Variants tells us about a particular way we can characterize (H, E ) that
are not trivial and such that H entails E. As we will see, this is useful for structur-
ing some of the proofs. It also turns out that the term rbð:P ∧ :Q , :Q Þ is closely
related (in the way described by Lemma 1.4.1 below) to the term Pr ðQ Þ

Pr ðP Þ. This
notation allows us to easily keep track of this connection. Proof of Notational
Variants is somewhat tedious. I recommend, therefore, that all but those who
are skeptical of the truth of this fact skip to Definition 1. We prove the two claims
in Notational Variants separately.

Notational Variants 1: If (H, E ) is not trivial and H entails E, then there is
exactly one (P, Q) such that (P, Q) is a nontrivial determiner and H 5 :P ∧ :Q
and E 5 :Q .

Proof of Notational Variants 1. Suppose (H, E) is not trivial and H entails E. Since
(H, E) is not extreme, E does not entail H, so H ⊂ E. Since (H, E) is not ex-
treme, E also does not entail :H, so H ≠ ? and ? ⊂ H ⊂ E . Since (H, E) is
not vacuous, E ≠ ⊤, so ? ⊂ H ⊂ E ⊂ ⊤.

Let us first establish that there is at least one (P, Q ) such that (P, Q ) is a non-
trivial determiner and H 5 :P ∧ :Q and E 5 :Q . We show this for the follow-
ing particular choice of P and Q :

Q 5 ⊤ 2 E 5 :E
P 5 E 2 H 5 E ∧ :H:
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This (P, Q ) is a nontrivial determiner (which, recall, means that P ≠ ?, Q ≠ ?,
P ∨ Q ≠ ⊤, and P ∧ Q 5 ?): First, notice that since E ≠ ⊤, Q 5 :E ≠ ?. Second,
notice that H ⊂ E, P 5 E 2 H ≠ ?. Third, consider that P ∨Q 5 ðE ∧ :H Þ ∨
:E 5 ð:E ∨ EÞ ∧ ð:E ∨ :H Þ 5 :E ∨ :H . Since H entails E, :E entails :H,
so :E ∨ :H 5 :H . Since H ≠ ?, P ∨ Q 5 :H ≠ ⊤. Fourth and finally, notice
that P ∧ Q 5 ðE ∧ :H Þ ∧ :E 5 ?.

And this (P, Q) is such that H 5 :P ∧ :Q and E 5 :Q . To begin, since
Q 5 :E ,

:Q 5 ::E 5 E :

Next, since P 5 E ∧ :H,

:P 5 :ðE ∧ :H Þ 5 :E ∨H:

Finally, since H ⊂ E, we know H ∧ E 5 H , and therefore

:P ∧ :Q 5 ð:E ∨ H Þ ∧ E 5 ðE ∧ :EÞ ∨ ðE ∧H Þ 5 E ∧H 5 H:

Thus, there is at least one (P, Q) such that (P, Q ) is a nontrivial determiner and
H 5 :P ∧ :Q and E 5 :Q .

To complete the proof, we still must show that there is no more than one
(P, Q ) with these two features. To show this, suppose for reductio that it is false.
So there is some nontrivial determiner (P 0, Q 0) such that either P ≠ P 0 or
Q ≠ Q 0 and H 5 :P ∧ :Q 5 :P 0 ∧ :Q 0 and E 5 :Q 5 :Q 0. It is immediate
that Q 5 Q 0. So P ≠ P 0, and therefore there is an x such that either x ∈ P ,
∉ P 0 or x ∉ P , ∈ P 0. Suppose x ∈ P , ∉ P 0, and therefore x ∉ :P , ∈ :P 0. Since
x ∈ P , x ∉Q 5 Q 0 and x ∈ :Q 5 :Q 0. Therefore, x ∉ :P ∧ :Q but x ∈ :P 0 ∧
:Q 0. Thus, H 5 :P ∧ :Q ≠ :P 0 ∧ :Q 0. Suppose then, instead, x ∉ P , ∈ P 0.
By analogous reasoning we establishedx ∈ :P ∧ :Q but x ∉ :P 0 ∧ :Q 0. Thus,
(P, Q) are unique. □

Notational Variants 2: If (P, Q) is a nontrivial determiner, then (:P ∧ :Q , :Q )
is not trivial and :P ∧ :Q entails :Q.

Proof of Notational Variants 2. Consider then (P, Q ) that is a nontrivial deter-
miner. (And recall once again that for (P, Q) to be a nontrivial determiner
is for the following to hold: P ≠ ?, Q ≠ ?, P ∨ Q ≠ ⊤, and P ∧ Q 5 ?.) It
is immediate that :P ∧ :Q entails :Q. Next, since P ≠ ?, P ⊈ :P ∧ :Q . Since
P ∧ Q 5 ?, P ⊂ :Q. Thus, :Q ⊈ :P ∧ :Q , so :Q does not entail :P ∧ :Q .
Next, notice that since :P ∧ :Q entails :Q , :Q entails :ð:P ∧ :Q Þ only if :Q 5
?. But since P ∨ Q ≠ ⊤,Q ≠ ⊤, so:Q ≠ ?. So:Q does not entail:ð:P ∧ :Q Þ. So
(:P ∧ :Q , :Q) is not extreme. Since Q ≠ ?, :Q ≠ ⊤, so (:P ∧ :Q , :Q) is
not vacuous. So as desired (:P ∧ Q , :Q) is not trivial and :P ∧ Q entails :Q □

We now define a (class of) function(s) that is intended to represent the strength
of reasons:

Definition 1. A function from pairs of propositions from the algebra based
on U to the interval (2∞,∞), rb, is a reasons-weighing function exactly if it satisfies
the following axioms:
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Base Propriety: b > 1.
Undefined Reasons: if (H, E) is extreme, rb(H, E) is undefined.
No Reason: if (H, E) is vacuous,

rbðH , EÞ5 log ð1Þ 5 0:

Complimentary Reasons: if (H, E) is not extreme,

rbð:H , EÞ 5 2 rbðH , EÞ:

Entailed Reason: if (H, E) is not trivial and H entails E,

rbðH , EÞ > log bð1Þ 5 0:

Negatively Correlated Reasons: if (P, Q ) is a nontrivial determiner,

rbð:P ∧ :Q , :PÞ 5 log b
brb :P ∧ :Q ,:Qð Þ

brb :P ∧ :Q ,:Qð Þ 2 1

� �
:

Positively Correlated Reasons: if (P, Q ), (Q , R), and (P, R) are nontrivial
determiners,

rbð:P ∧ :R , :RÞ 5 log b brb :Q ∧ :R ,:Rð Þ 2 1
� �

brb :P ∧ :Q ,:Qð Þ 2 1
� �

1 1
� �

:

Aggregative Reasons: if (P, Q ) is a nontrivial determiner,

rb :P ∧ :Q , :Qð Þ 5 log b o
Qi∈Q

brb :P ∧ :Qi ,:Qið Þ 2 1

 !
11

 !
:

Factored Reasons: if (H, E) is not trivial, H does not entail E, and :H does
not entail E, then for any D, D 0 such that (H, D) and (:H, D 0) are nontrivial
determiners,

rbðH , EÞ 5 log b
brb :D ∧ :ðH ∧ EÞ,:ðH ∧ EÞð Þ21
� �

brb :H ∧ :D,:Dð Þ21
� �

brb :D0 ∧ :ð:H ∧ EÞ,:ð:H ∧ EÞð Þ21
� �

brb H ∧ :D0 ,:D0ð Þ21
� �

0
@

1
A:

The relationship between the axioms and Theorem 1 (restated below) will
emerge in the course of the proofs. But there are two points to note here. First,
in light of Notational Variants, Negatively Correlated Reasons–Aggregative Rea-
sons are axioms concerning cases where (H, E) is not trivial and H entails E. Sec-
ond, I will not explicitly mention Base Propriety. But it is relied on implicitly to
ensure that the relevant log values are defined and are the right kind of increas-
ing function of their arguments.

Now we may define a second function:
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Definition 2. A function from propositions from the algebra based on U to
the interval (2∞, ∞), frb , is the prior based on rb exactly if it satisfies the following
axioms:62

Ratios of Cells: If U 5 fA1, A2,⋯ Ang, then,
1 5 frb ðA1Þ 1 frb ðA2Þ1 :::1 frb ðAnÞ

frb ðA2Þ 5 ðbrb :A1 ∧ :A2,:A2ð Þ 2 1Þfrb ðA1Þ
frb ðA3Þ 5 ðbrb :A1 ∧ :A3,:A3ð Þ 2 1Þfrb ðA1Þ

⋮

frb ðAnÞ 5 ðbrb :A1 ∧ :An ,:Anð Þ 2 1Þfrb ðA1Þ:
Sum of Cells: For any proposition P,

• if P 5 ∅, frb ðPÞ 5 0
• if P ≠ ∅, frb ðP Þ 5 oAi∈P frb ðAiÞ.
Given a particular reasons-weighing function rb, frb is uniquely determined.
Our main aim is to prove the following claim about these functions:

Theorem 1. For any reason-weighing function, rb, (i) frb is a probability func-
tion, and (ii) for any propositions H, E either

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �

or rb(H, E ) and log b

�
frb ðE ∣H Þ
frb ðE ∣ :H Þ

�
are both undefined.

This theorem shows that the reasons-weighing function that we defined (i) de-
termines a probability function and (ii) is equivalent to the log likelihood confir-
mation measure based on that probability function.

A.2. frb Is a Probability Function

Here we show (i) in Theorem 1:

Proposition 1.1. frb is a probability function.

Proof of Proposition 1.1. It suffices to show that frb satisfies the following conditions:

Nonnegativity: frb ðPÞ ≥ 0 for any proposition P.
Normalization: frb ð⊤Þ 5 1.
Finite Additivity: frb ðP ∨ Q Þ 5 frb ðP Þ 1 frb ðQ Þ when P ∧ Q 5 ?.
Ratio: frb ðP ∣Q Þ 5

frb ðP ∧Q Þ
frb ðQ Þ when frb ðQ Þ ≠ 0.
62. It is possible to more explicitly albeit less intuitively define frb ðAiÞ. We can explicitly
define frb ðA1Þ as 1 over the term 1 1 ðbrb ð:A1 ∧ :A2,:A2Þ 2 1Þ 1 ðbrb ð:A1 ∧ :A3,:A3Þ 2
1Þ 1 ::: 1 ðbrb ð:A1 ∧ :An ,:An Þ 2 1Þ. For any other, Ai, frb ðAiÞ is this same fraction except re-
placing the 1 in the numerator with brb ð:A1 ∧ :Ai ,:Ai Þ 2 1.
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Begin withNormalization. By Sumof Cells, frb ð⊤Þ 5 frb ðA1Þ 1 frb ðA2Þ 1 ::: 1
frb ðAnÞ. Next, by the first equation in Ratios of Cells, frb ðA1Þ 1 frb ðA2Þ 1 ::: 1
frb ðAnÞ 5 1. Thus, frb ð⊤Þ 5 1.

Next turn to Finite Additivity. Assume that one of P or Q are empty. Without
loss of generality suppose it is P; then, by Sum of Cells frb ðP Þ 5 0 and
P ∨ Q 5 Q . Thus, frb ðP ∨ Q Þ 5 frb ðQ Þ 1 0 5 frb ðQ Þ 1 frb ðP Þ, so Finite
Additivity holds. Suppose instead that P and Q are both nonempty and that
P ∧ Q 5 ?. Let P 5 fAP1 , AP2 , ::: APng and Q 5 fAQ1 , AQ2 , ::: AQng. Since
P ∧ Q 5 ?, P ∨ Q 5 fAP1 , AP2 , ::: APn , AQ1 , AQ2 , ::: AQng, where this specifica-
tion doesn’t list the same cell twice. By Sum of Cells, we know that

frb ðP Þ 5 frb ðAP1Þ 1 frb ðAP2Þ 1 ::: 1 frb ðAPn Þ
frb ðQ Þ 5 frb ðAQ1Þ 1 frb ðAQ2Þ 1 ::: 1 frb ðAQn Þ

frb ðP ∨ Q Þ 5 frb ðAP1Þ 1 frb ðAP2Þ 1 ::: 1 frb ðAPn Þ
1 frb ðAQ1Þ 1 frb ðAQ2Þ 1 ::: 1 frb ðAQn Þ:

Thus, frb ðP ∨ Q Þ 5 frb ðP Þ 1 frb ðQ Þ.
Now turn to Nonnegativity. Every proposition, P, is a (possibly empty) set of

cells. Suppose P is empty; then, Sum of Cells says frb ðPÞ 5 0, so Nonnegativity
holds. Suppose P is nonempty, so, by Sum of Cells, frb ðP Þ 5 oAi∈P frb ðAiÞ. If we
can prove that frb ðAiÞ ≥ 0 for all Ai ∈ U , this will suffice to establish Nonnegativ-
ity. To show frb ðAiÞ ≥ 0 for all Ai ∈ U , recall Ratios of Cells:

1 5 frb ðA1Þ 1 frb ðA2Þ 1 ::: 1 frb ðAnÞ
frb ðA2Þ 5 ðbrb :A1 ∧ :A2,:A2ð Þ 2 1Þfrb ðA1Þ
frb ðA3Þ 5 ðbrb :A1 ∧ :A3,:A3ð Þ 2 1Þfrb ðA1Þ

⋮

frb ðAnÞ 5 ðbrb :A1 ∧ :An ,:Anð Þ 2 1Þfrb ðA1Þ:
We now reason by cases of the value of frb ðA1Þ.

Begin by supposing frb ðA1Þ 5 0. This entails that frb ðA2Þ 5 0 and sim-
ilarly for the other cells. This is incompatible with frb ðA1Þ1 frb ðA2Þ1 :::1
frb ðAnÞ 5 1.

Suppose next, then, that frb ðA1Þ < 0. :A1 ∧ :A2 entails :A2 and (:A1 ∧ :A2,
:A2) is not trivial.63 So Entailed Reason says that rbð:A1 ∧ :A2, :A2Þ > log bð1Þ.
Thus, brb ð:A1 ∧ :A2,:A2Þ 2 1 > 0. So frb ðA2Þ is negative. Similarly for the other
cells. This is incompatible with frb ðA1Þ 1 frb ðA2Þ 1 ::: 1 frb ðAnÞ 5 1.

Thus, frb ðA1Þ > 0. Since brb ð:A1 ∧ :A2,:A2Þ 2 1 > 0, frb ðA2Þ > 0, and similarly
for the other cells. Thus, frb ðAiÞ > 0 for all Ai. So Nonnegativity holds.

Finally, we force Ratio by defining frb ðP ∣Q Þ to be frb ðP ∧Q Þ
frb ðQ Þ when frb ðQ Þ ≠ 0. □

We have in fact shown the stronger claim that frb is a regular probability func-
tion in the sense that for any P ≠ ?, frb ðP Þ ≠ 0. We have shown this because our
proof established that for all Ai ∈ U , frb ðAiÞ > 0. Since (by Sum of Cells) every
proposition except ? is the sum of the Ai values, it follows that any proposition
63. This is ensured by the fact that jU j ≥ 3.
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that is not ? is assigned a number greater than 0. I discuss this fact a bit more in
Section A.4.

Having established that frb is a regular probability function, we will freely make
use of this below.64

A.3. rb 5 lfrb

Here we show (ii) of Theorem 1. We prove the result by considering the exclusive
and exhaustive collection of five cases described by figure 1.

A.3.1. Trivial (H, E)
Trivial (H, E) are either extreme or vacuous. Begin with the extreme case.

Proposition 1.2. For any H, E such that (H, E) is extreme, rb(H, E) and

log b

�
frb ðE ∣H Þ
frb ðE ∣ :H Þ

�
are both undefined.
FIG. 1.—Exclusive and exhaustive categorization of pairs of propositions.
64. It is also worth noting in passing that this proof essentially shows that for U of n-
elements, n 2 1 values of rb suffice to determine a probability function. Similarly, the proof
below shows that if we fix n 2 1 values of rb (e.g., we could use the same n 2 1 claims used
for frb and fix the values for Case 1 in the proof of Proposition 1.4), we can use the axioms to
fix the remaining values. This perhaps suggests that theremaybe n 2 1 “nonderivative” rea-
sons that determine themuch larger total set of claims about reasons and probabilities. That
said, the result itself only tells us that there is an entailment from these n 2 1 claims to all
the claims about reasons; it does not establish that there is a determination relation. Indeed,
the particular n 2 1 claims we choose are somewhat arbitrary. What I suggested is that we
make use of n 2 1 claims of the form rbð:A1 ∧ :Ai , :AiÞ for i ≠ 1. But howwe enumerate
the partition is arbitrary, so we could have started with a different set of n 2 1 claims.
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Proof of Proposition 1.2. Since (H, E) is extreme, E entails H or E entails :H. In
either of these cases, Undefined Reasons tells us that rb(H, E) is undefined.
To see that log b

�
frb ðE ∣H Þ
frb ðE ∣ :H Þ

�
is also undefined, begin by supposing E entails H.

In this setting,

0 5 frb ðE ∧ :H Þ 5
frb ðE ∧ :H Þ

frb ð:H Þ 5 frb ðE ∣ :H Þ,

so log b

�
frb ðE ∣H Þ
frb ðE ∣ :H Þ

�
is undefined because the term inside the log involves division

by 0. Suppose instead E entails :H. In this setting,

0 5 frb ðE ∧ H Þ 5
frb ðE ∧ H Þ

frb ðH Þ 5 frb ðE ∣H Þ 5
frb ðE ∣H Þ
frb ðE ∣ :H Þ ,

so log b

�
frb ðE ∣H Þ
frb ðE ∣ :H Þ

�
is undefined because log(0) is undefined. □

Next, we consider vacuous (H, E).

Proposition 1.3. For any H, E such that (H, E) is vacuous

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �
:

Proof of Proposition 1.3. Since (H, E) is vacuous, No Reason tells us that rbðH , EÞ 5
0. Since (H, E) is vacuous, E 5 ⊤ andH ≠ ⊤,?.65 So frb ðH Þ ≠ 0, frb ð:H Þ ≠ 0,
E ∧ H 5 H , and E ∧ :H 5 :H . Thus,

frb ðE ∣H Þ 5
frb ðE ∧ H Þ

frb ðH Þ 5
frb ðH Þ
frb ðH Þ 5 1

and

frb ðE ∣ :H Þ 5
frb ðE ∧ :H Þ

frb ð:H Þ 5
frb ð:H Þ
frb ð:H Þ 5 1:

Therefore, as desired,

log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �
5 log b

1

1

� �
5 log bð1Þ 5 0:

□
The cases that are not trivial (i.e., neither extreme nor vacuous) takemore work.

A.3.2. H Nontrivially Entails E
We begin with the cases where (H, E) is not trivial andH entails E. Given Notational
Variants, the result that we wish to establish is the following:
65. If H 5 ⊤, then E entails H, so (H, E) is extreme and hence not vacuous. If
H 5 ?, E entails :H, so (H, E) is extreme and hence not vacuous.
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Proposition 1.4. For any (P, Q) that is a nontrivial determiner,

rb :P ∧ :Q , :Qð Þ 5 log b
frb :Q ∣ :P ∧ :Qð Þ

frb :Q ∣ :ð:P ∧ :Q Þð Þ
� �

:

It helps to begin with a lemma.
Lemma 1.4.1. For any (P, Q) that is a nontrivial determiner,

log b
frb ð:Q ∣ :P ∧ :Q Þ

frb ð:Q ∣ :ð:P ∧ :Q ÞÞ
� �

5 log b
frb ðQ Þ
frb ðP Þ

1 1

� �
:

Proof of Lemma 1.4.1. Since :P ∧ :Q entails :Q, we know that

log b
frb ð:Q ∣ :P ∧ :Q Þ

frb ð:Q ∣ :ð:P ∧ :Q ÞÞ
� �

5 log b
1

frb ð:Q ∣ :ð:P ∧ :Q ÞÞ
� �

:

The denominator of the term inside the log can be simplified (here the transi-
tion to the third equality from the second relies (twice) on the assumption that
P ∧ Q 5 ?):

frb ð:Q ∣ :ð:P ∧ :Q ÞÞ 5
frb ð:Q ∧ :ð:P ∧ :Q ÞÞ

frb ð:ð:P ∧ :Q ÞÞ

5
frb ð:Q ∧ ðP ∨ Q ÞÞ

frb ðP ∨ Q Þ

5
frb ðP Þ

frb ðPÞ 1 frb ðQ Þ :

We then reason with the whole term inside the log as follows:

frb ð:Q ∣ :P ∧ :Q Þ
frb ð:Q ∣ :ð:P ∧ :Q ÞÞ 5

1
frb ðPÞ

frb ðPÞ1frb ðQ Þ

5
frb ðPÞ 1 frb ðQ Þ

frb ðP Þ
;

frb ð:Q ∣ :P ∧ :Q Þ
frb ð:Q ∣ :ð:P ∧ :Q ÞÞ

� �
frb ðPÞ 2 frb ðP Þ 5 frb ðQ Þ

frb ð:Q ∣ :P ∧ :Q Þ
frb ð:Q ∣ :ð:P ∧ :Q ÞÞ 2 1

� �
frb ðP Þ 5 frb ðQ Þ

frb ð:Q ∣ :P ∧ :Q Þ
frb ð:Q ∣ :ð:P ∧ :Q ÞÞ 5

frb ðQ Þ
frb ðPÞ

1 1

:

Thus,

log b
frb ð:Q ∣ :P ∧ :Q Þ

frb ð:Q ∣ :ð:P ∧ :Q ÞÞ
� �

5 log b
frb ðQ Þ
frb ðP Þ

1 1

� �
:

□
We now turn to our main task.

:
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Proof of Proposition 1.4. We prove this by considering the six exclusive and ex-
haustive cases that are described in figure 2.

Case 1: P 5 A1 and Q 5 Ai for i ≠ 1. Given Definition 2 (and Ratios of
Cells in particular), we know that

frb ðAiÞ 5 ðbrb :A1 ∧ :Ai ,:Aið Þ 2 1Þfrb ðA1Þ
frb ðAiÞ
frb ðA1Þ 1 1 5 brb :A1 ∧ :Ai ,:Aið Þ:

Since rbð:A1 ∧ :Ai , :AiÞ 5 log bðbrb ð:A1 ∧ :Ai ,:AiÞÞ, we have

rb :A1 ∧ :Ai , :Aið Þ 5 log b
frb ðAiÞ
frb ðA1Þ 1 1

� �
:

So by Lemma 1.4.1, we have our desired result:

rb :A1 ∧ :Ai , :Aið Þ 5 log b
frb ð:Ai ∣ :A1 ∧ :AiÞ

frb ð:Ai ∣ :ð:A1 ∧ :AiÞÞ
� �

:

Case 2: P 5 Ai for i ≠ 1 and Q 5 A1. Obviously, Ai ≠ ?, A1 ≠ ?, and
Ai ∧ A1 5 ?. And, since jU j ≥ 3, Ai ∨ A1 ≠ ⊤. (A1, Ai) is a nontrivial deter-
miner, and therefore Negatively Correlated Reasons tells us that

rb :Ai ∧ :A1, :A1ð Þ 5 rb :A1 ∧ :Ai , :A1ð Þ 5 log b
brb ð:A1 ∧ :Ai ,:AiÞ

brb ð:A1 ∧ :Ai ,:Ai Þ 2 1

� �
:

FIG. 2.—Exclusive and exhaustive categorizations of nontrivial determiners.
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We know from Case 1 that

brb ð:A1 ∧ :Ai ,:AiÞ 5
frb ðAiÞ
frb ðA1Þ 1 1:

So

rb :Ai ∧ :A1, :A1ð Þ 5 log b

frb ðAi Þ
frb ðA1Þ 1 1

frb ðAiÞ
frb ðA1Þ

0
@

1
A:

The term inside the log then can be simplified as follows:

frb ðAiÞ
frb ðA1Þ 1 1

frb ðAi Þ
frb ðA1Þ

5
frb ðAiÞfrb ðA1Þ
frb ðA1Þfrb ðAiÞ 1

frb ðA1Þ
frb ðAiÞ 5 1 1

frb ðA1Þ
frb ðAiÞ :

So

rb :Ai ∧ :A1, :A1ð Þ 5 log b 1 1
frb ðA1Þ
frb ðAiÞ

� �
:

Thus, by Lemma 1.4.1, we have our desired result:

rb :Ai ∧ :A1, :A1ð Þ 5 log b
frb ð:A1 ∣ :Ai ∧ :A1Þ

frb ð:A1 ∣ :ð:Ai ∧ :A1ÞÞ
� �

:

Case 3: P 5 Ai for i ≠ 1 and Q 5 Aj for j ≠ 1 and i ≠ j . Obviously,
Ai ≠ ?, A1 ≠ ?, Aj ≠ ?, Ai ∧ A1 5 A1 ∧ Aj 5 Ai ∧ Aj 5 ?. And since
jU j ≥ 3, Ai ∨ A1 ≠ ⊤, A1 ∨ Aj ≠ ⊤, and Ai ∨ Aj ≠ ⊤. So (A1, Aj) and (Ai,
A1) are nontrivial determiners, and therefore Positively Correlated Reasons tells
us that

rb :Ai ∧ :Aj , :Aj

� �
5 log b brb :A1 ∧ :Aj ,:Ajð Þ 2 1

� �
brb :Ai ∧ :A1,:A1ð Þ 2 1
� �

1 1
� �

:

We know from Case 1 that

brb :A1 ∧ :Aj ,:Ajð Þ 5
frb ðAjÞ
frb ðA1Þ 1 1

and from Case 2 that

brb :Ai ∧ :A1,:A1ð Þ 5
frb ðA1Þ
frb ðAiÞ 1 1:

So

rb :Ai ∧ :Aj , :Aj

� �
5 log b

frb ðAjÞ
frb ðA1Þ

� �
frb ðA1Þ
frb ðAiÞ

� �
1 1

� �

5 log b

frb ðAjÞ
frb ðAiÞ 1 1

� �
:
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Thus, by Lemma 1.4.1, we have our desired result:

rb :Ai ∧ :Aj , :Aj

� �
5 log b

frb ð:Aj ∣ :Ai ∧ :AjÞ
frb ð:Aj ∣ :ð:Ai ∧ :AjÞÞ

� �
:

Case 4: P 5 Aj and Q 5 fQ1,Q2, ::: ,Qng, where jQ j > 1, P ∨ Q ≠ ⊤, and
P ∧ Q 5 ?. Given this, Aggregative Reasons applies and tells us that

rb :Aj ∧ :Q , :Q� �
5 log b o

Qi∈Q
brb :Aj ∧ :Qi ,:Qið Þ 2 1

 !
1 1

 !
:

We know from Cases 1–3 that

brb :Aj ∧ :Qi ,:Qið Þ 2 1 5
frb ðQiÞ
frb ðAjÞ 1 1

� �
2 1 5

frb ðQiÞ
frb ðAjÞ :

So

o
Qi∈Q

brb :Aj ∧ :Qi ,:Qið Þ 2 1 5
frb ðQ1Þ
frb ðAjÞ 1

frb ðQ2Þ
frb ðAjÞ 1 ::: 1

frb ðQnÞ
frb ðAjÞ 5

frb ðQ Þ
frb ðAjÞ :

Therefore,

rb :Aj ∧ :Q , :Q� �
5 log b o

Qi∈Q
brb :Aj ∧ :Qi ,:Qið Þ 2 1

 !
1 1

 !

5 log b
frb ðQ Þ
frb ðAjÞ 1 1

� �
:

Thus, by Lemma 1.4.1, we have our desired result:

rb :Aj ∧ :Q , :Q� �
5 log b

frb ð:Q ∣ :Aj ∧ :Q Þ
frb ð:Q ∣ :ð:Aj ∧ :Q ÞÞ

� �
:

Case 5: P 5 fP1, P2, ::: , Png and Q 5 Aj , where jP j > 1, P ∨ Q ≠ ⊤, and
P ∧ Q 5 ?. The proof proceeds analogously to Case 2 but relying on the re-
sults of Case 4.

Case 6: P 5 fAP1 , AP2 , ::: , APng andQ 5 fAQ1 , AQ2 , ::: , AQmg, where jP j > 1,
jQ j > 1, P ∨ Q ≠ ⊤, and P ∧ Q 5 ?. The proof proceeds analogously to
Case 3 but relying on the results of Case 4 and Case 5. □

A.3.3. The Remaining Nontrivial Cases
Now that we have established Proposition 1.4, we can extend it to other cases.
Our first extension covers values of rb(H, E) when :H entails E :

Proposition 1.5. For any H, E such that (H, E) is nontrivial and :H entails E

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �
:
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Proof of Proposition 1.5. We know from Complimentary Reasons that

rbðH , EÞ 5 2 rbð:H , EÞ:

:H nontrivially entails E.66 So Proposition 1.4 tells us that

rbð:H , EÞ 5 log b
frb ðE ∣ :H Þ
frb ðE ∣H Þ

� �
:

So

rbðH , EÞ 5 2 log b
frb ðE ∣ :H Þ
frb ðE ∣H Þ

� �
:

Since log ðabÞ 5 2log ðbaÞ, we have our desired result:

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �
:

□
Our final case is one where neither H nor :H entails E.

Proposition 1.6. For any H, E such that (H, E) is not trivial and H does not
entail E and :H does not entail E,

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �
:

To establish this proposition, it helps to begin with the following Lemma.

Lemma 1.6.1. If (H, E) is not trivial and H does not entail E and :H does
not entail E, then there are D, D 0 such that (H, D) and (:H, D 0) are nontrivial
determiners.

Proof of Lemma 1.6.1. Suppose (H, E) is not trivial andH does not entail E and :H
does not entail E. Thus,H ≠ ⊤, and so there is a D ≠ ? such that D ∧ H 5 ?.
But suppose for reductio there is no such D that is also such that D ∨ H ≠ ⊤. For
this to be the case, it must be that there is exactly one A* ∈ U such that A* ∉ H .67

Since (H, E) is not trivial, E does not entail H. So there is an Ei ∈ E such that
66. This relies on the claim that if (H, E) is not trivial, then (:H, E) is not trivial.
Here’s a proof: Since (H, E) is not trivial, E does not entail H, E does not entail :H, and
E ≠ ⊤. It follows from this that E does not entail :H, E does not entail ::H, and
E ≠ ⊤. So (:H, E) is not trivial.

67. If there is no such A*, H 5 ⊤, which contradicts our assumption that (H, E ) is
not trivial. If there is a A*, A** ∈ U such that A* ≠ A** and A*, A** ∉ H , then A* is a
D such that D ≠ ?, D ∧ H 5 ?, and D ∨ H ≠ ⊤.
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Ei ∉ H . Thus, A* 5 Ei ⊆ E . Thus, A* entails E. But A* 5 :H , so this contra-
dicts our assumption that:H does not entail E. Thus, theremust be aD ≠ ? such
that D ∧ H 5 ? and D ∨ H ≠ ⊤.

By analogous reasoning but relying on the fact that H does not entail E (and
that (H, E) is not trivial and hence (:H, E) is not trivial), it follows that there is a
D 0 ≠ ? such that D 0 ∧ :H 5 ? and D 0 ∨ :H ≠ ⊤. □

We now turn to the main proof.
Proof of Proposition 1.6. Consider then anyH, E such that (H, E) is not trivial and

H does not entail E and :H does not entail E. We know by Lemma 1.6.1 that
there are D, D 0 such that (H, D) and (:H, D 0) are nontrivial determiners. So Fac-
tored Reasons tells us that

rbðH , EÞ 5 log b
ðbrb :D ∧ :ðH ∧ EÞ,:ðH ∧ EÞð Þ 2 1Þðbrb :H ∧ :D,:Dð Þ 2 1Þ

ðbrb :D 0 ∧ :ð:H ∧ EÞ,:ð:H ∧ EÞð Þ 2 1Þðbrb H ∧ :D 0,:D 0ð Þ 2 1Þ

 !
:

Given that (H, D) is a nontrivial determiner, we know from Proposition 1.4 that

rb :H ∧ :D, :Dð Þ 5 log b
frb ðDÞ
frb ðH Þ 1 1

� �
:

Since it follows from H ∨ D ≠ ⊤ that D ∨ ðH ∧ EÞ ≠ ⊤, it follows from
ðH ∧ EÞ 5 ? that D ∧ ðH ∧ EÞ 5 ?, and it follows from (H, E ) being not
trivial that H ∧ E ≠ ?, we also know that (D, H ∧ E ) is a nontrivial determiner.
So Proposition 1.4 tells us that

rb :D ∧ :ðH ∧ EÞ, :ðH ∧ EÞð Þ 5 log b
frb ðH ∧ EÞ

frb ðDÞ
1 1

� �
:

We can then simplify the numerator as follows:

ðbrb :D ∧ :ðH ∧ EÞ,:ðH ∧ EÞð Þ 2 1Þðbrb :H ∧ :D,:Dð Þ 2 1Þ 5
frb ðH ∧ EÞ

frb ðDÞ
� �

frb ðDÞ
frb ðH Þ
� �

5
frb ðH ∧ EÞ

frb ðH Þ 5 frb ðE ∣H Þ:

For analogous reasons, we also know from Proposition 1.4 that

rb :D0 ∧ :ð:H ∧ EÞ, :ð:H ∧ EÞ� �
5 log b

frb ð:H ∧ EÞ
frb ðD0Þ 1 1

� �

rbðH ∧ :D0, :D0 5 log b
frb ðD0Þ
frb ð:H Þ 1 1

� �
:

And therefore by similar reasoning the denominator can be simplified:

ðbrb :D0 ∧ :ð:H ∧ EÞ,:ð:H ∧ EÞð Þ 2 1Þðbrb H ∧ :D0,:D0ð Þ 2 1Þ 5 frb ðE ∣ :H Þ:
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Thus, we have our desired result:

rbðH , EÞ 5 log b
frb ðE ∣H Þ
frb ðE ∣ :H Þ

� �
:

□

A.4. Further Issues

Let us close by discussing a few related issues.
One issue worth discussing is whether roughly the converse of Theorem 1

holds:
For any probability function, Pr, there is a reasons-weighing function, rb, such

that (i) for any proposition P, PrðP Þ 5 frb ðPÞ, and (ii) for any propositions H,
E, either

log b
PrðE ∣H Þ
PrðE ∣ :H Þ
� �

5 rbðH , EÞ

or log b

�
PrðE ∣H Þ
Pr ðE ∣ :H Þ

�
and rb(H, E) are both undefined.

As it turns out, this claim does not quite hold. Instead, the following weaker
claim holds:

Theorem 2. For any regular probability function, Pr, there is a reasons-
weighing function, rb, such that (i) for any proposition P, PrðP Þ 5 frb ðP Þ, and
(ii) for any propositions H, E, either

log b
PrðE ∣H Þ
PrðE ∣ :H Þ
� �

5 rbðH , EÞ

or log b

�
PrðE ∣H Þ
Pr ðE ∣ :H Þ

�
and rb(H, E) are both undefined.

This is not surprising given that our proof of (i) of Theorem 1 showed that the
frb is a regular probability function (Sec. A.2). I omit the proof of Theorem 2
because it relies primarily on techniques that we have already used. In two
supplements posted on PhilPapers (and my website), I present the proof (Sup-
plement 1 to “ ‘Adding Up’ Reasons”) and provide a slower explanation and fur-
ther motivation for the arguments of this appendix (Supplement 2 to “ ‘Adding
Up’ Reasons”).68 It is an interesting question how to modify Definition 1 so that
we can remove the restriction to regular probability functions.69
68. More exactly, the first five axioms correspond to well-known features of l. The re-
maining axioms can be shown by using Lemma 1.4.1 and performing some canceling of
terms that we have already seen in the proof of Theorem 1. For example, to prove that l
satisfies Negatively Correlated Reasons, one can begin by making use of Lemma 1.4.1, then
expand the term inside the log in the reverse of the way done in the proof of Case 2 of Prop-
osition 1.4, and then apply Lemma 1.4.1 once more in the other direction. Similar meth-
ods work for Positively Correlated Reasons (relying on the proof of Case 3 of Proposi-
tion 1.4), Aggregative Reasons (relying on the proof of Case 4 of Proposition 1.4), and
Factored Reasons (relying on the proof of Proposition 1.6).

69. The first thing to do is to change Entailed Reason so that if (H, E) is not trivial and
H entails E, rbðH , EÞ ≥ 0 rather than strictly greater than 0. From here some other mod-
ifications to the axioms and proofs are needed to accommodate cases where relevant values
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There are a variety of other important issues that are worthy of more discus-
sion than I can provide here. First, since the axiomatization and proofs in this
article are rather inelegant, it would be good to search for a more elegant version
of our results. Second, it would be good to explore whether similar results can be
established for other confirmation measures and to compare the different axi-
oms defining these measures.70

But, as emphasized in the main text, the most pressing issue is to identify a set
of qualitative axioms to characterize when one reason is better than another rea-
son and prove that our quantitatively defined reasons-weighing function can be
understood as a numerical representation of this underlying qualitative structure.

Appendix B

Some Confirmation Measures

In this appendix, I discuss the properties of l mentioned in the main text, as well
as three confirmation measures that have properties analogous to l. I also com-
ment on two other measures.

We begin with the measure that we discuss the most in the main text:

Log Likelihood Measure: lðH , EÞ 5 log
�

Pr ðE ∣H Þ
Pr ðE ∣ :H Þ

�
.

If we define l∣E ðH , E 0Þ 5 log
�

Pr ðE 0 ∣H ∧ EÞ
PrðE 0 ∣ :H ∧ EÞ

�
, it is known that

Claim 1. lðH , E ∧ E 0Þ 5 lðH , EÞ 1 l∣E ðH , E 0Þ.

Proof of Claim 1.

lðH , EÞ 1 l∣E ðH , E 0Þ 5 log
PrðE ∣H Þ
PrðE ∣ :H Þ
� �

1 log
PrðE 0 ∣H ∧ EÞ
PrðE 0 ∣ :H ∧ EÞ
� �

5 log
PrðE ∣H Þ PrðE 0 ∣H ∧ EÞ

PrðE ∣ :H Þ Pr ðPrðE 0 ∣ :H ∧ EÞ
� �

5 log
PrðE ∧ E 0 ∣H Þ
PrðE ∧ E 0 ∣ :H Þ
� �

5 lðH , E ∧ E 0Þ:

□
Claim 1 has the following corollary:
Corollary 1.1. lðH , E ∧ E 0Þ 5 lðH , EÞ 1 lðH , E 0Þ if lðH , E 0Þ 5 l∣E ðH , E 0Þ.
70. We also have only defined an unconditional reasons-weighing function, but we
might wish to have a notion of such a function conditional on some proposition. This is
easy to do: rb∣E is the reasons-weighing function conditional E and defined so that for
all (H, E0), rb∣E ðH , E 0Þ 5 rbðH , E ∧ E 0Þ 2 rbðH , EÞ. An interesting question is how to pro-
ceed if we take the notion of a conditional reasons-weighing function as basic.

of rb are undefined now because of certain propositions having probability 0. Our discus-
sion is also limited to functions defined over an algebra of propositions generated from a
finite partition. A good question is whether our results can be generalized to other ways of
representing propositions.
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The additivity claim in the main text has us assume that certain independence
conditions hold so that PrðE 0 ∣H ∧ EÞ 5 PrðE 0 ∣H Þ and that PrðE 0 ∣ :H ∧
EÞ 5 Pr ðE 0 ∣ :H Þ. In this setting, l∣E ðH , E 0Þ 5 lðH , E 0Þ. So given our corollary,
the additivity claim in the main text holds.

Next, let us consider perhaps the most well-known measure:
Difference Measure: dðH , EÞ 5 PrðH ∣ EÞ 2 PrðH Þ.

John Earman, among others, advocates d.71 If we define d∣E ðH , E 0Þ 5
Pr ðH ∣ E ∧ E 0Þ 2 PrðH ∣ EÞ, it is known that
Claim 2. dðH , E ∧ E 0Þ 5 dðH , EÞ 1 d∣E ðH , E 0Þ.

Proof of Claim 2.

dðH , EÞ 1 d∣E ðH , E 0Þ 5 Pr ðH ∣ EÞ 2 Pr ðH Þ 1 PrðH ∣ E ∧ E 0Þ 2 PrðH ∣ EÞ
5 Pr ðH ∣ E ∧ E 0Þ 2 PrðH Þ 5 dðH , E ∧ E 0Þ:

□
Claim 2 has the following corollary:

Corollary 2.1. dðH , E ∧ E 0Þ 5 dðH , EÞ 1 dðH , E 0Þ if dðH , E 0Þ 5 d∣E ðH , E 0Þ.
Now consider the following measure:

Log Ratio Measure: rðH , EÞ 5 log
�
Pr ðH ∣ EÞ
Pr ðH Þ

�
.

Peter Milne, among others, advocates r.72 If we define r∣E ðH , E 0Þ 5
log
�
Pr ðH ∣ E ∧ E 0Þ
Pr ðH ∣ EÞ

�
, it is known that

Claim 3. r ðH , E ∧ E 0Þ 5 rðH , EÞ 1 r∣E ðH , E 0Þ.

Proof of Claim 3.

r ðH , EÞ 1 r∣E ðH , E 0Þ 5 log
PrðH ∣ EÞ
PrðH Þ

� �
1 log

PrðH ∣ E ∧ E 0Þ
PrðH ∣ EÞ

� �

5 log
PrðH ∣ EÞ PrðH ∣ E ∧ E 0Þ

PrðH Þ PrðH ∣ E 0Þ
� �

5 log
PrðH ∣ E ∧ E 0Þ

PrðH Þ
� �

5 rðH , E ∧ E 0Þ:

□
Claim 3 has the following corollary:

Corollary 3.1. rðH , E ∧ E 0Þ 5 r ðH , EÞ 1 r ðH , E 0Þ if r ðH , E 0Þ 5 r∣E ðH , E 0Þ.
The fourth measure for which we can establish similar results is the following:
71. John Earman, Bayes or Bust (Cambridge, MA: MIT Press, 1992).
72. Peter Milne, “log[P(h/eb)/P(h/b)] Is the One True Measure of Confirmation,” Phi-

losophy of Science 63 (1996): 21–26.
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Z Measure: if PrðH ∣ EÞ ≥ PrðH Þ, then zðH , EÞ 5 PrðH ∣ EÞ2PrðH Þ
12PrðH Þ

if PrðH ∣ EÞ < PrðH Þ, then zðH , EÞ 5 PrðH ∣ EÞ2PrðH Þ
Pr ðH Þ .

Vincenzo Crupi, Katya Tentori, andMichel Gonzalez, among others, advocate z.73

Unfortunately, I cannot provide the result for this measure that is exactly anal-
ogous to the ones that I have provided for the other measures. But I can provide
a less general result. Let us say that E, E0, and E ∧ E 0 point the same direction
with respect to H exactly either if PrðH ∣ EÞ ≥ PrðH Þ, Pr ðH ∣ E 0Þ ≥ PrðH Þ,
and Pr ðH ∣ E ∧ E 0Þ ≥ PrðH Þ or if PrðH ∣ EÞ < PrðH Þ, PrðH ∣ E 0Þ < PrðH Þ,
and Pr ðH ∣ E ∧ E 0Þ < PrðH Þ. Next, let us define a term z=E ðH , E 0Þ slightly dif-
ferently than the other conditionalized measures that we have discussed:

z=E ðH , E 0Þ 5
PrðH ∣ E ∧ E 0Þ 2 Pr ðH ∧ EÞ

a
,

where a 5 1 2 PrðH Þ if Pr ðH ∣ E 0Þ ≥ PrðH Þ and where a 5 PrðH Þ if
Pr ðH ∣ E 0Þ < PrðH Þ. We can then show that

Claim 4. zðH , E ∧ E 0Þ 5 zðH , EÞ 1 z=E ðH , E 0Þ if E, E 0, and E ∧ E 0 point
the same direction with respect to H.

In the following proof, the assumption that the evidence points the same di-
rection ensures that the a terms in the denominators are the same:

Proof of Claim 4.

zðH , EÞ 1 z=E ðH , E 0Þ 5
Pr ðH ∣ EÞ 2 Pr ðH Þ

a
1

PrðH ∣ E ∧ E 0Þ 2 PrðH ∣ EÞ
a

5
Pr ðH ∣ E ∧ E 0Þ 2 PrðH Þ

a
5 zðH , E ∧ E 0Þ:

□
Claim 4 has the following corollary:

Corollary 4.1. zðH , E ∧ E 0Þ 5 zðH , EÞ 1 zðH , E 0Þ if E, E0, and E ∧ E 0

point the same direction with respect to H and zðH , E 0Þ 5 z=E ðH , E 0Þ.
Thus, our results for z are more limited than those for other measures but still
useful.74

There are, however, certain measures for which I cannot provide any useful
results. Two prominent ones are the following:

Normalized Difference Measure: sðH , EÞ 5 PrðH ∣ EÞ 2 PrðH ∣ :EÞ.75
73. Vincenzo Crupi, Katya Tentori, and Michel Gonzalez, “On Bayesian Measures of
Evidential Support,” Philosophy of Science 74 (2007): 229–52.

74. A recent note from Branden Fitelson (Branden Fitelson, “A Problem for Confir-
mation Measure Z,” Philosophy of Science [forthcoming]) provides a result that makes this
limitation vivid: according to z, it cannot be both that two pieces of evidence point in dif-
ferent directions and that they are independent of one another in a way that allows for the
kind of additive results that we have for the measures above.

75. This measure is advocated by, among others, Joyce, Foundations of Causal Decision
Theory; and David Christensen, “Measuring Confirmation,” Journal of Philosophy 96 (1999):
437–61.

https://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2564707&citationId=p_n_144
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F520779&citationId=p_n_141
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Carnap’s Measure: cðH , EÞ 5 PrðEÞðPr ðH ∧ EÞ 2 PrðH ÞÞ.
Brander Fitelson has shown that it does not generally hold that

sðH , E ∧ E 0Þ 5 sðH , EÞ 1 s∣E ðH , E 0Þ,
where s∣E ðH , E 0Þ 5 PrðH ∣ E ∧ E 0Þ 2 PrðH ∣ E ∧ :E 0Þ.76 I am not aware of
results about c of this sort, but there very well may be such results.

This does not fully settle the issue of whether there is a useful condition for
assessing issues related to additivity. There may be such conditions using some
kind of nonstandard conditional measure like the one described for z. I do
not know whether such techniques will yield results for s or c.
76. This result is shown in Branden Fitelson, “A Bayesian Account of Independent Ev-
idence with Applications,” Philosophy of Science 68 (2001): S123–S140. See Ellery Eells and
Branden Fitelson, “Measuring Confirmation and Evidence,” Journal of Philosophy 97
(2000): 663–72, for discussion of the arguments in Christensen, “Measuring Confirma-
tion,” and of the properties of normalized measures more generally.

https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F392903&citationId=p_n_146
https://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2678462&citationId=p_n_147

