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THE ITERATIVE CONCEPTION OF SET

THOMAS FORSTER
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Abstract. The two expressions ‘The cumulative hierarchy’ and ‘The iterative conception of sets’
are usually taken to be synonymous. However, the second is more general than the first, in that there
are recursive procedures that generate some ill-founded sets in addition to well-founded sets. The
interesting question is whether or not the arguments in favour of the more restrictive version — the
cumulative hierarchy — were all along arguments for the more general version.

The phrase ‘The iterative conception of sets’ conjures up a picture of a particular set-
theoretic universe — the cumulative hierarchy — and the constant conjunction of phrase-
with-picture is so reliable that people tend to think that the cumulative hierarchy is all
there is to the iterative conception of sets: if you conceive sets iteratively, then the result
is the cumulative hierarchy. In this paper, I shall be arguing that this is a mistake: the
iterative conception of set is a good one, for all the usual reasons. However, the cumulative
hierarchy is merely one way among many of working out this conception, and arguments
in favour of an iterative conception have been mistaken for arguments in favour of this one
special instance of it. (This may be the point to get out of the way the observation that
although philosophers of mathematics write of the iferative conception of set, what they
really mean — in the terminology of modern computer science at least — is the recursive
conception of sets. Nevertheless, having got that quibble off my chest, I shall continue to
write of the iferative conception like everyone else.)

1. The cumulative hierarchy. There is a celebrated observation of Quine’s (1968)
“No entity without identity,” which throws down a challenge to theory designers every-
where. If you lack a satisfactory identity criterion for widgets, then you cannot use first-
order predicate calculus with equality to theorise about them; that is to say, you are unable
to treat them formally. In particular, any story about what sets are had better include a chap-
ter in which we learn how to tell when two sets are the same and when they are different.

The cumulative hierarchy gives an entirely satisfactory response to this challenge; two
sets are identical if every member of the one is identical to a member of the other and vice
versa. Since € is well-founded in the cumulative hierarchy, this regress must terminate;
then, the fact that it terminates gives us an unequivocal and intelligible criterion for identity
between sets.

I argued in Forster (1983) that it is precisely this feature of the cumulative hierarchy
that makes it so attractive. I do not know who was the first person to make this point:
when making it in Forster (1983), I assumed I was merely giving routine expression to
an uncontroversial common understanding. Certainly one of the — uncontroversial — points
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routinely made in arguing against accepting self-membered sets is that such an acceptance
sabotages the possibility of a recursive algorithm for deciding identity.

I now think that this is an idea worth taking further, and accordingly I am taking it as my
point of departure here.

The appeal of the cumulative hierarchy lies precisely in its neat response
to Quine’s challenge. (0)

If (Q) is correct, then any concept of set that has a response to Quine’s challenge that
is as good as that of the cumulative hierarchy has an equally good a claim to the title
of the way to think about sets. There are other iterative ways of generating sets, and the
iterative nature of their genesis will guarantee a similarly satisfactory recursive account of
equality between the sets so generated. Some of these ways generate more than just the
well-founded sets, so my conclusion will be that the iterative conception of sets will give
us a great deal more than just the well-founded sets.

Let us start off with a rehearsal of the cumulative hierarchy conception with a view to
isolating some key features. I shall be exploiting the image (which Boolos, 1971, attributes
to Kripke) of the lasso. In the cumulative hierarchy story, we lasso collections of sets, and
then — before throwing them back into the herd of sets whence we plucked them — we
perform some magic on the lasso contents (otherwise we would not get a new set). The
magic is performed with the aid of a wand.

(There are various points that can be made about how the things one catches with one’s
lasso are not earlier sets, but copies of earlier sets, since a set can get caught in a lasso with
other sets more than once. Perhaps we mean fokens of earlier sets. A rigorous description
of this process in terms of lassos probably does need to exploit the type—token distinction
or something very like it. But we probably do not need to worry about such subtleties — at
least for the moment.)

The point I want to emphasise here is the indispensability of the wand. The point needs
making because if the only iteratively conceived sets one examines are the sets of the
cumulative hierarchy, then it is possible for a hurried thinker to overlook the need for the
wand, and this is a mistake that leads to further error. We need the wand for the following
reasons (among others).

1. There is first the apparently banal point that I have just made that unless one does
something to the lasso contents before throwing them back, then one has not done
anything to increase the stock of sets: one has merely picked some up and put them
back. The function performed by the wand is the turning of a preset into a set.
However, the point can be made in another way.

2. As (Q) emphasises, one very pleasing aspect of the cumulative hierarchy picture is
the consistent and fitting story it tells about the nature of identity between sets. We
know from the axiom of extensionality that two sets are identical iff their members
are identical. This sounds as if we can decide all questions like x = y? in the
same way: just check whether every member of x is a member of y and vice versa.
However, if that were all there was to it, then we would be in a situation where
any question ‘u = 0?7 could be answered immediately, and the extra information
provided by the news that all sets belong to the cumulative hierarchy would not
enable us to do anything we could not do already. Life was never meant to be that
easy. If the assumption that every set is in the cumulative hierarchy is to be any
use to us, we will have to restrict ourselves to supposing that we can only (i) tell
whether or not a set is empty and (ii) recover the members of a set on demand,
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with all questions about those members to be answered later. The insight that best
underpins (ii) is the idea that a set is magicked out of lasso contents and that the
magicking can be reversed and the contents recovered.

Once we are clear in our minds that sets need a wand as well as a lasso, we can make
the cumulative hierarchy work for us, as follows. To determine whether or not x = y, we
take x and y apart and check, for each member of x whether or not there is a member
of y to which it is identical (and vice versa too of course). By reducing the question of
identity between x and y to identity between members of x and members of y, we obtain
a recursive algorithm for testing equality.

Where does the process of the last paragraph bottom out? With the empty set: the one
time when we can give an immediate answer to the question ‘Is x = y?’ is when one or
other of x and y is empty. If they are both empty, the answer is ‘yes’; if only one of them
is empty, it is ‘no’. Must we always reach such a stage? Yes, because at each stage in this
recursion, we are asking questions about sets of ever-decreasing rank, and the ordinals are
well-founded: every descending sequence of ordinals is finite.

We can characterise this algorithm in terms of a game G, played between two players:
Equal and Not-equal. If both x; and y; are empty, then Equal wins; if one of them
is empty and the other nonempty, then Not -equal wins. Otherwise, Not -equal picks
a member x” of x or a member y’ of y and Equal must reply with a member y’ of y (if
Not-equal had picked x’ of x) or a member x" of x (if Not-equal had picked y’ of
y.). Then, they play G,.—,. It is routine to prove (by well-founded induction on €) that
x =y iff player Equal has a winning strategy in G—y.

We will return to this game-theoretic imagery later.

So if we are to exploit properly the fact that our sets all live inside the cumulative
hierarchy, then we have to be able to ‘take sets apart’. This in turn means that we have to
have an anti-wand. I like to think of the anti-wand as a kind of one-armed bandit. You put x
into the slot and pull the handle, and after a brief clattering sound, the tray at knee level fills
with members. The tray contents do not constitute a set, and they fail to constitute a set in
exactly the same way that the lasso contents fail to constitute a set. The lasso contents fail
to be a set because they have not been turned into one yet, and the tray contents fail to be
a set because they are the result of taking the set apart. Notice also that the lasso contents
and tray contents have no internal structure: in that respect, they are already a bit like sets.
Notice, too, that the players never pick elements of sets; they pick elements from presets:
lasso contents/tray contents.

Of course what is going on here is that we are thinking of sets as a datatype that is
equipped with what the theoretical computer scientists call constructors and destructors.
The one-armed bandit is simply the destructor function, and the wand is the corresponding
constructor — the sole constructor as it happens. In contrast, the datatype of formulae has
lots of constructors: A, V, and so on, but the cumulative hierarchy has only one.

But notice that there is nothing in the idea of sets as conceived iteratively that says there
should be only one constructor. Formulae are conceived iteratively and have more than
one constructor: the fact that a datatype is conceived iteratively tells us nothing about how
many constructors it has.

If there is nothing in the iterative conception of a datatype that tells us how many
constructors that datatype is to have, perhaps we should consider the possibilities of other
ways of constructing sets — iteratively. The umbrella this venture can shelter under is
Conway'’s principle adumbrated in the appendix to part zero of Conway: “Objects may
be created from earlier objects in any reasonably constructive fashion.” (p. 66).
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2. The two-constructor case. We can modify the cumulative hierarchy construction
to one where — each time we create a new set by lassoing — we also create a companion to it
which is to be its complement. As before, once you have lassoed a collection, you touch it
with a wand and you obtain a set. However, this time you have a second wand, and as well
as touching the lassoed collection with the first wand to get a set, you touch the lassoed
collection with the second wand and you get the complement of the set made by the first
wand. You ordain that the complement of x is to contain all the things so far created that
are not in x, and additionally to contain all the sets as yet unborn.

Let us consider the first few stages of this construction to get clear in our minds the
difference between this construction and the cumulative hierarchy construction.

Stage 0
At the outset, the world is empty, so when I throw out my lasso I catch nothing. Thus,
the two wands give me @ and its complement V.

Stage 1
The world now contains two things: § and V. So when I throw out my lasso, I might
catch

(1) nothing, as before;
(i1) @, in which case the two wands give me {#} and V \ {0};
(iii) V, in which case the two wands give me {V} and V \ {V'}; or
(iv) both @ and V, in which case my two wands give me {@, V}and V \ {0, V}.

Stage 2

So now the world contains 8 things: 4, V, {@}, V\{#}, {V}, V\{V},{d, V}and V\{4, V}.
Stage 3. ..

And now we have to say ‘and so on ...  because (as the reader can calculate) at the next

stage, we will have 512 things! Of course we iterate this through all the ordinals just as one
iterates the cumulative hierarchy.

Sets created by the first wand are low sets, and sets created by the second wand are
complements of low sets or co-low sets for short. Not hard to see that no low set can
be self-membered, and every co-low set must be self-membered. There are a couple of
important (because missable) trivialities to emphasise at this stage.

1. Our sets — of the new flavour as well as the old — will have birthdays or ranks, just as
under the old dispensation.

2. Low is not the same as well-founded: every well-founded set is low, but there are
plenty of low sets that are not well-founded: {V'} for one. However, it is true that
no set created by the first wand can ever be a member of itself. Indeed, we can
easily even establish that € restricted to first-wand sets is well-founded. (Consider
the function that sends each set to the stage at which it is created.)

I shall discuss in the section ‘Church—Oswald models’ the question of what axioms for
set theory are suggested by this construction. However, it may be worth noting at this
stage that one can give for this construction the same kind of argument that it generates no
paradoxical objects as one can give for the cumulative hierarchy construction. For example,
consider the possible existence of the Russell class. If it ever got created, it would have to
be either a low set or a co-low set. It cannot be a low set, since we keep on creating new
sets that are not members of themselves: no low set is a member of itself after all. And
the complement of the Russell class cannot be low, since we keep on creating sets that
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are members of themselves: every co-low set is a member of itself. So the Russell class is
neither low nor co-low, so it never gets created.

2.1. Set equality in the two-constructor case. Recall the game G ,—, played by Equal
and Not -equal in the cumulative hierarchy setting, and consider how it works in the new
two-wand setting.

In the cumulative hierarchy setting, we never had to worry about infinite plays. The point
is not that one player or the other always had a strategy to force a win after a finite play;
the point is the stronger one that no infinite plays were possible at all. The situation here is
very different.

Suppose we leave the termination conditions the same as in the cumulative hierarchy, as
on page 3.

Consider the game Gy—y in which the two players test whether or not V = V. The an-
swer is ‘yes’, so Not-equal should lose the game. However, he can keep on postponing
defeat by repeatedly playing V, a move to which Equal is forced to reply V every time.

(Obviously the same holds not just for V but for any self-membered set.) This is an
infinite play that will happen even if both players know what they are doing, and it shows
that at least some infinite plays have to be classed as wins for player Equal.

So do we want all infinite plays to be wins for player Equal? This might not be such
a bad idea: it is simple to check that the relation “Equal has a strategy in the game G,—,
that enables her to avoid defeat in finitely many moves” is a congruence relation for €.!
This — it could be argued (Forster, 1983) — is the only absolutely indispensable condition
for a candidate for the role of ‘equality between sets’. So it is not an obviously absurd idea
to rule that all infinite plays are wins for player Equal. If we rule that all infinite plays are
wins for player Equal, we are adopting what is known in the trade as the axiom of strong
extensionality. This axiom is the formalisation of the view that two sets should be identical
unless there is a good finite reason for them not to be.

However, this policy results in immediate disaster.> Consider the two sets V \ {V} and
V — both of them authentic products of the two-wand construction — and the game played
to distinguish them. For his first move, player Not -equal clearly picks V from V — after
all, it is his only hope — but then Equal picks V \ {V} from V \ {V}, and the two players
are back in exactly the situation they started in! Clearly Equal can postpone defeat for
ever. Annoyingly we want this infinite play to be a win for player Not-equal!

Malitz’s example appears to be telling us that if we have strong extensionality, then not
both V and V \ {V} can be sets: as we have just seen, Equal wins the game Gy—y\{v) by
postponing defeat indefinitely.

For years, I thought this was something to do with the nonexistence of complements of
singletons in the set theory GPC (called ‘generalised positive comprehension’), which I am
not proposing to discuss here (but see Esser, 1999, 2004, and references therein), but now
I think this is mere coincidence.

I suggest instead that the significance of these two difficulties — V and Malitz’s example
—is that we have not made the necessary changes to G-, in moving from the cumulative
hierarchy case to the two-wand case. To accommodate the two-wand picture and still give
a recursive account of set equality, we have to modify the rules of G,—, to take account
of the fact that sets can now be constructed in more than one way. The rules for the two-
constructor case should have been as follows.

1 Strictly it is a congruence relation for the (infinitary) operation performed by the lasso.
2 T am indebted to Isaac Malitz for drawing my attention to this example.
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If one of x and y is low and the other co-low, then Not-equal wins
at once. If they are both low, Not-equal picks a member (x" or y’)
of one of them and Equal replies with a member (¥’ or x’) of the
other. If they are both co-low, Not-equal picks a member (x” or y’)
of one of V \ x and V' \ y, then Equal replies with a member (y” or x”)
or the other. They then play G,/—,.

The rationale for this is: since we now have fwo ways of constructing sets not one, then
in order to tell when two sets are the same or distinct, we have to know what constructors
the two sets arise from at top level and deconstruct them using the right destructor. We
actually — all along — had to deconstruct a set for the e-game, but since (in the cumulative
hierarchy picture) there was only ever one constructor, we did not have to ask which one
was being used. This time there are two, and we do have to ask. Readers should satisfy
themselves that this process (the game) is terminating in exactly the same way and for the
same reasons that the original game, G,—,, was terminating in the cumulative hierarchy
case: at each recursive call, we are considering objects with earlier birthdays. The situation
is exactly like that with the construction of formulae. Two formulae are the same if they
have the same list of immediate subformulae and have the same principal connective. We
need to know the top-level connective of a formula when trying to parse it. Just as the
truth-conditions of a formula depend on how it is constructed, so the identity conditions of
sets depend on how they are constructed: a set is constructed from lasso contents plus an
operation. This development can be easily generalised to encompass as many constructors
as we like. Two sets are the same iff they are constructed using the same constructor on
the same lasso contents. As long as no set can be made in more than one way,” we can
continue to claim that identity between sets can be given the same recursive narrative as
that given by the cumulative hierarchy and — who knows — even if it turns out that some
sets are manufacturable in more than one way, we might yet find a way of coping.

So let us summarise. The claim is that one can painlessly generalise the construction of
the cumulative hierarchy by postulating other constructors, and thereby building other sets,
whose membership relation can be ill-founded.

However — despite their ill-foundedness — all these new sets nevertheless have well-
founded structure of some kind, and it is in virtue of this recursive structure that we can
continue to give a recursive account of set identity — enabling us to remain onside with the
Quinean police* in exactly the way we were when we only had the cumulative hierarchy.

The key to making sense of this startling claim is to be found in teasing apart the
two roles played by the membership relation €. In the cumulative hierarchy picture, it
is both (i) the membership relation between the sets we have created and (ii) the relation
of ontological priority between those sets. (Strictly it is the ancestral or transitive closure
of € that is the relation of ontological priority rather than € itself.) In Forster (2003), I call
the ontological priority relation between objects in a recursive datatype the engendering
relation of that datatype. It is not hard to show that the engendering relation of a recursive
datatype is always well-founded and — being well-founded — is available to be exploited
for transfinite algorithms for testing equality (and other relations).

3 If we had a power set constructor as well as a finite-set constructor, then any power sets of a finite
set would be constructed in more than one way: (i) by the power set constructor and (ii) — since it
is also finite — by the finite-set constructor

4 Who have “No entity without identity” tattooed on their knuckles so that it is the last thing you
see before they ...
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We are now in a position to see that — although our sets have to form a recursive datatype,
so we can have a recursive characterisation of set equality as in the two cases we have
seen — the engendering relation of our recursive datatype of sets does not have to be €
(or rather, its transitive closure). In the case of the cumulative hierarchy, the engendering
relation happens to be €, but in the two-wand case, it does not: it is the (rather cumbersome)
relation which is the ancestral (transitive closure) of

“(ow(y) Ax € y) Vv (Zlow(y) Ax & y)”

...which is actually equivalent to
x ey« low (y). 3)

The role played by € in the cumulative hierarchy case is now played by the engendering
relation of the new rectype: the relation (3) displayed above.

3. More wands. The two-wand case discussed above is of course only the simplest
of a range of possible ways of complicating the construction that gave us the cumulative
hierarchy — while remaining within the iterative conception of sets broadly understood.
It is possible to spice up the construction so that — for example — every set not only
has a complement but also generates a principal ultrafilter: {y : x € y}. Also, if
~ is an equivalence relation definable by quantifying only over low sets, one can add
~-equivalence classes for all low sets (see Church, 1974). However, I will not be pursuing
these possibilities since they do not serve to make any metaphysical points not already
made by the two-wand case.

There are four attractive features of the cumulative hierarchy which the two-wand con-
struction also has. They are the second-order categoricity of the corresponding set theory,
the recursive decidability of equality, the availability of a natural notion of restricted quan-
tifier, and the possibility of independence proofs by forcing.

3.1. Second-order categoricity. The two-wand picture has the same second-order cat-
egoricity as the one-wand picture. This, again, is just a result of the recursive nature of the
definition. In second-order logic, one can prove that any recursive datatype whatever — even
of infinite character — is unique and its second-order theory is categorical. The categoricity
of second-order ZF is merely a special case of this — and the categoricity of the second-
order version of the theory corresponding to the two-wand construction (‘CUS’ which we
will see below) is another special case.

3.2. Equality. The equality relation between sets must be a congruence relation for €,
and strong extensionality is the idea that it should be the maximal congruence relation for
€. It could be argued that prima facie the only thing we know about equality between sets
is that it is a congruence relation for €. If there are lots of such congruence relations, then
we have to decide which of them is equality. By assuming strong extensionality, we cut
down the number of candidates to one and thereby simplify the decision mightily. Hence
the attraction of an axiom of strong extensionality.

Strong extensionality is straightforwardly true in the cumulative hierarchy: given any
two congruence relations for €, we prove by induction on € that they agree. This is
probably what makes strong extensionality attractive to us. But an analogous result holds
in any iterative construction. It is just that in the more general case, the induction is not
on € but on the engendering relation. In the two-constructor case, the axiom of strong
extensionality is precisely the claim that equality is defined by the game G,—,.

3.3. Restricted quantifiers. Any recursive datatype gives us a notion of restricted quan-
tifier. In the arithmetic of IN, it is (Vx < y) and its dual. In the cumulative hierarchy, it is
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(Vx € y) and its dual. These restricted quantifiers are well-behaved because the relation
that restricts the quantifier — € or < — is the relation of ontological priority. There is
always a well-defined notion of ontological priority with a recursive datatype: it is just
the engendering relation. (There is no good notion of restricted quantifier in the reals or
the rationals for example.) When we put it like this, it becomes clear what the appropriate
notion of ontological priority is for the two-wand case: our restricted quantifiers will be
(Yx R y) and (Ix R y) (where R is the relation (3) above).

One feature one expects restricted quantifiers to have is that one should be able to
‘pull out’ unrestricted quantifiers from within their scope and thereby prove a normal
form theorem to the effect that every formula is equivalent to one that has no unrestricted
quantifiers within the scope of a restricted quantifier. In the cumulative hierarchy picture,
this is secured by means of the axiom scheme of collection. It is simple to check that
the same normal form theorem holds for the new version of restricted quantifier that we
have in the two-wand case. Suppose (VxRy)(3z)(¢). There are two cases to consider, y
low and y co-low. If y is low, we use collection for low sets to obtain a low Z such that
3Z)(vxRy)(AzRZ)(p). If y is co-low, we use low collection, this time on the complement
of y.

This is all right as long as we have low collection. Does low collection follow from low
replacement? Yes, because the usual argument using witnesses of minimal rank works.

It is not hard to see how one would extend the proof to more complex iterative construc-
tions.

3.4. Forcing. Forcing is possible in the two-wand construction. The recursions on
€ that feature in the truth lemma and the definition of forcing for atomic formulae are
replaced by recursions on the relation (3). Also a =: {(l;, 1) : b € a}ifaislow. If a is
co-low, then we must have ¢ =: V' \ (b, 1):b & a}.

. [y bea if a is low
a=: 5
VA\{(b,1):b &a} ifaisco-low.
Similarly,

F _.

(b : @p € F)((b, p) € a)} ifaislow
V\(V\a)f if a is co-low.

Notice that there can be no co-low poset (the graph of a partial order on a co-low set
would not be co-low), so all sets of conditions are low sets as before.

4. Objections. It is quite unrealistic to expect this novel picture to be welcomed with
open arms; the cumulative hierarchy picture is far too well-entrenched. Boolos (1971)
quotes Russell as saying that the other conceptions of set are not “such as even the cleverest
logician would have thought of if he had not known of the contradictions.”> Boolos has the

5 One could equally wonder whether the iterative conception of set is the kind of thing even the
cleverest logician would have thought of if he had not known of the contradictions. Since the
discovery of the paradoxes predates not only NF and ZF but even all the articles giving expression
to the cumulative hierarchy, we shall never know, but surely it is a safe bet that without the
contradictions even the cleverest logicians would have gleefully forged ahead with naive set
theory. One is reminded of Quine’s (1969) remark on p. 242 of Set theory and its logic that
“[impredicative definition] is hardly a procedure to look askance at, except as one is pressed by
the paradoxes to look askance at something.”
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grace to admit “There does not seem to be any argument that is guaranteed to persuade
someone who really does not see the peculiarity of a set’s belonging to itself, or to one
of its members etc., that these states of affairs are peculiar.” Despite this, objections will
surely be raised. Let us try to anticipate some of them.

4.1. Sets constituted by their members. Those of us with students have probably been
telling them for years that what distinguishes sets from all other mathematical structures
that have elements (lists, multisets, etc.) is that

Sets are uniquely characterised by their members. 2

But now we find that the only sets that are defined by their members are sets created
with the first wand. This seems to be telling us that the objects created by other wands
— legitimate kosher extensional objects though they are — are not sets since they are not
constituted by their members. But is this really the moral? I think not. Observation (2)
is not so much a definition of set as a very useful contrastive explanation: a device for
explaining sets to computer science students who have encountered other datatypes like
lists and multisets. It captures the contrast between first-wand sets and other first-wand
objects such as lists and multisets. It is the feature that one tries to point out once the
first-wand nature of the entity has been agreed on in advance. The purpose of “Sets are
constituted by their members” is not to make a contrast with “Some sets are constituted by
their non-members” but with “Lists are constituted by their members plus what you do to
them”. (2) is really no more than an attention-getting way of saying that € is extensional.
And extensionality of € does not rule out co-low sets.

4.2. The end of time. It will be objected that we do not know what the members of the
complement objects are until the end of time. It is admitted that we know in some sense
what the members will be, but this knowledge is of the set’s intension, not its extension —
and sets are supposed to be extensions!

The obvious riposte to this would appear to be the observation that we know what sets
are members of what once the construction is halted at the end of time. We discover what
extensions correspond to the intensions once we reach the end of time. How good a reply
is this?

Not very. After all we never do reach the end of time. The process of creating new sets is
everlasting, and not only will we be engaged on it as long as we have breath in our bodies,
but when we die someone else will take over. We never reach a stage at which we down
tools and start doing something else (such as some mathematics — which is partly what this
was supposed to be for, let us not forget) because the recursion tells us at any stage to throw
out the lasso and make more sets. Every stage is a stage at which you make more sets.

But notice that this argument can be used to equal effect against the cumulative hierarchy
picture of sets too. The V,;’s never stop either and for the same reason. What is to be done
about this? What is the ZF-istes’ reply?

They have at least two. One is “Our sets are all right from the moment they are born;
a second-wand set isn’t all right until the end of the construction.” This seems to be an
important difference.

Another reply is: since you cannot wait until the end of time (because there is no end of
time), what you do is call a halt at some bounded stage.

But if you halt the two-wand construction analogously at some bounded stage, you do
know what the members of all your sets are.

Perhaps that was not really what the ZF-iste meant: perhaps, rather than calling a halt
to the process, simply interleave it with the execution of some mathematics. This seems
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to have some bite: it makes the co-low sets look more intensional, in that one can be
acquainted with them without knowing exactly what they contain: more might get put in
as soon as you turn aside from doing the mathematics to constructing some more sets. But
then, plenty of things like IR and P(IN) are intensional in parallel ways. The ZF-istes do
not object to that, so presumably it is not a problem.

4.2.1. What is it an argument against?. The end-of-time argument swims so naturally
and swiftly to the front of the minds of those used to the cumulative hierarchy that there
is a tendency for them to overlook its other possible applications. Is this an argument
against thinking of these objects as sets? That is certainly the use to which it is put. But
surely — if it has any force at all — it has more force than that. It is not just an argument
against the idea that these things are sets; it is an argument against the idea that they are
legitimate mathematical objects at all. However, they surely are legitimate mathematical
objects in virtue of Conway’s principle. Careless or nervous readers might be spooked by
the appearance of the complementation operator in the two-wand construction into thinking
that it is not a monotone construction, but this is merely a trick of the light: the construction
is perfectly monotone.

There may be room for debate about whether they are entities of the kind legitimated by
Conway’s principle.

4.3. How many wands?. If we are to admit that the cumulative hierarchy does not
exhaust the collection of sets iteratively conceived, then how many constructors do we
have to acknowledge? Once we have dropped our guard to the extent of allowing two
wands, might there be no end to it and we would become bogged down in discussions of
whether one constructor or another is legitimate. Might not it just be simpler never to let
these people through the door in the first place?

My reply: it is an interesting question, but it is hardly a problem. It is the problem — if
problem it be — confronting the man who tunnels into the cellars of a Chateau in Bordeaux
and cannot work out which bottle to open first. I would like to have problems like that.

More seriously though, the thought that admitting other recursive constructions might
give rise to difficulties later — and that a line will have to be drawn — is not by itself an
argument for drawing the line so close to home that the two-constructor case is excluded.
It may be a motivation to look for a significant difference between the one-constructor and
the two-constructor cases, but it does not itself constitute such a difference, and in any case
that search is — or soon will be — well under way anyway.

Here is one difference that it does not make: even if the two-wand story is not as
metaphysically satisfying as the one-wand story, it is just as good from the point of view
of arguing for consistency. The cumulative hierarchy motivates the adoption of a suite
of axioms (ZF) for which it constitutes an obvious model. The two-wand construction
provides a similarly convincing consistency proof for the set of axioms that it motivates.
As we shall see later, one can give a consistency proof of this theory relative to ZF, but there
is no need to, since the theory can be justified in the same way that ZF can. Accordingly
objectors who wish to view the sets produced by the two-wand construction as spurious
must think that there is more to the existence of mathematical objects than freedom from
inconsistency.

5. Church-Oswald models. The two-wand construction (and its more complicated
congenors) naturally gives rise to a body of axioms for set theory and in very much the
same way that the cumulative hierarchy gave rise to the axioms of ZF, and in this section,
we will see what axioms are suggested by the two-wand construction.
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Interestingly, these theories also admit fairly direct consistency proofs relative to ZF
by a method due independently and simultaneously to Church and Oswald. A thorough
technical treatment of these methods is to be found in Forster (2001), but we will sketch
one example — the two-wand construction — briefly here.

Working with a model 9t = (V, €) of ZF(C), fix once for all a definable bijection k
between V and V x (0, 1), which must satisfy the property that the ranks of k({x, 0)) and
k({x, 1)) must both be greater than the rank of x. Now define a new model with the same
domain and a new membership relation by

k(y) = (y,0)and x € y/, or
x e
T k) = L 1 andx ¢ .

It is now a laborious but relatively straightforward technical exercise to check that the
new structure we have just characterised is the same up to isomorphism as the result of
the two-wand construction described earlier. Even those with little appetite for this kind of
detail will find it easy to check that if the second component of k(x) is 0, then x is low and
if it is 1, then x is co-low.

Now just what have we created a model of by these two processes?

The well-founded sets created by the two-wand construction at stage a are clearly the
same as the well-founded sets we created in the cumulative hierarchy by stage o, so
according to this construction, the well-founded sets are a model of ZF (if that is what
it was we concluded the cumulative hierarchy is a model of).

Clearly we have separation for low sets, just as we had for all sets in the cumulative
hierarchy case.

Whatever reason caused us to believe that the axiom scheme of replacement holds in the
cumulative hierarchy will cause us to believe in this context that a surjective image of a
low set is a low set. This tells us — for example — that the axiom of pairing holds: whatever
x and y are, {x, y} is going to be a low set whose birthday is the first day after the birthdays
of x and y. Every low class will be a set. This of course also gives us an axiom scheme of
replacement for low sets: a surjective image of a low set in a function class is clearly a set
—indeed, it is a low set — for precisely the reason that the cumulative hierarchy is a model
of replacement: the argument is the same.

Binary unions — x U y — will always exist: if x and y are both low, then x U y is low too;
if x and y are both co-low, being the complements of the low sets x” and y’, respectively,
then x U y is the complement of the low set x’ N y’. If one is low and the other not (as
in the case where x is the complement of the low set x’) and y is low, then x U y is the
complement of x”\ y, which is a low set by separation.

The power set of a low set will be a low set. The power set of a co-low set will be
neither low nor co-low, and so the axiom of power set holds only for low sets in the models
obtained by this method. Sumset is different. Notice that every co-low set must contain a
co-low member: every set containing only low sets must be of bounded rank. Any superset
of a co-low set is co-low, so every sumset of a co-low set is co-low. A sumset of a low set
is low unless it has a co-low member.

The result is that this construction gives us a model of a theory whose axioms are

1. Extensionality;

2. Existence of x U y;
3. Existence of {x, y};
4. Existence of V' \ x;
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5. The (externally) well-founded sets form a model of ZF;
6. Sumset;
7. Replacement for low sets.

The fifth and seventh axioms are of course schemes. The first four axioms are a system
called NF,. The fifth axiom is a reflection of the fact that (modulo some small print) the
well-founded sets of the two-wand construction are precisely the sets in the cumulative
hierarchy. This is roughly the theory CUS of Church (1974).

So there are two ways of obtaining models for theories like those discussed in Forster
(2001) and Church (1974). One can (i) elaborate them directly by iterative constructions
that parallel the construction of the cumulative hierarchy and (ii) obtain them by coding up
novel membership relations within a model of ZF. As far as we can tell, (ii) preceded (i)
but there appears to be no significance to this fact. Did (ii) really precede (i)? Admittedly
it would be very odd for Church to have thought as hard as he did about CUS without dis-
covering the two-wand construction. But would it not have been odder still for him to have
discovered the two-wand construction and then say nothing about it, instead proceeding
directly to the Church—Oswald model construction? Perhaps not: it may be that Church’s
formalist leanings predisposed him to see this material entirely through syntax and that he
did not know the two-wand construction. Of course it may also be that he knew it but —
again, because of his formalist leanings — felt that wands were not the right instruments for
presenting this idea.®

5.1. The significance of the Church-Oswald interpretation. So the two-wand itera-
tive constructions can all be coded up inside the cumulative hierarchy by the techniques of
Church and Oswald. It is a good question what the metaphysical significance of this coding
might be. Does the existence of the coding confirm our belief that

These more general iterative constructions are authentic constructions of
genuine mathematical objects Horn 1

Or does it on the other hand rather explain why

These more general iterative constructions are merely
pointless epiphenomena Horn 2

The dilemma sporting these two horns is of course Moore’s paradox of analysis.

Those who want to take the second horn have to have a reason for believing in the
legitimacy of the cumulative hierarchy construction that goes beyond the legitimacy that
the cumulative hierarchy acquires from being a sensible recursive datatype declaration. So
far — as we have seen — the iterative conception and the cumulative hierarchy have always
been conflated, so arguments for the first have been mistaken for arguments for the second.
Hitherto this has always had the result that arguments of the kind now required by the
second-horn votaries have never been specifically identified. Now at least, votaries of the
second horn do at any rate know what it is they have to establish.

5.2. Forti-Honsell antifoundation. 1t is natural in this discussion to wonder whether
or not there is a connection with Forti-Honsell style antifoundation axioms (Forti &
Honsell, 1983). It is possible to think of Forti-Honsell universes as recursively constructed:
at stage a, add all subsets of what you have so far and then — before proceeding to stage
o + 1 — add all sets whose set pictures you have just thereby added. This observation is

6 Thanks to the referee and Isaac Malitz and Flash Sheridan for discussions on this point.
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behind the proof that in universes of this kind, every set is of the same size as a well-
founded set. We would have to have a constructor that created sets from set pictures. On
the face of it, no such constructor would be injective and we would have the problem
mentioned earlier of ‘sets being created in more than one way’. There will surely be ways
round this problem (in this case), but we have no space to cover them here.

6. Envoi: Why considering the two-wand construction might be helpful. Natu-
rally, I prefer the first horn of the dilemma on page 108. The reason why we should extend
a warm welcome to theories like CUS is that they strive very hard to do something ZF
does not even consider attempting. They represent an endeavour to reason seriously and
logically about the genuinely infinite, The Unbounded. Attempts to grasp the nettle and
take The Unbounded seriously (one thinks of Cantor and Dedekind) have in the past been
attended with success and have engendered some useful new mathematics. It might be the
same again.

But do they in fact represent such an endeavour? Against this can be made the point
that since the two-wand construction can always be coded inside the cumulative hierarchy,
it can have no new mathematics to tell us. It is not clear how strong a point this is: not
everybody is of the view that the interpretability of Forti-Honsell antifoundation (AFA)
into ZF+ foundation means that AFA contains no new mathematics. In any case, even if one
does conclude that the interpretability of the two-wand construction inside the cumulative
hierarchy means that the the two-wand construction contains no new mathematics (on the
grounds that everything it has to say can be encoded as facts about well-founded sets), that
does at least mean that some of the results about well-founded sets are encoded assertions
about big sets and should therefore be seen in that light: insights into large sets were buried
inside the cumulative hierarchy all along. The fact that every hereditarily finite set is well-
founded is a way of encoding the fact that every set of cofinite sets is included in one of
its members. One is reminded of the tale of the two dreamers from the One Thousand and
One Nights (night 351).”
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